精英家教网 > 初中数学 > 题目详情

【题目】据媒体报道,在第52届国际速录大赛中我国速录选手获得了7枚金牌、7枚银牌和4枚铜牌,在国际舞台上展示了指尖上的“中国速度”.看到这则新闻后,学生小明和小海很受鼓舞,决定利用业余时间练习打字.经过一段时间的努力,他们的录入速度有了明显的提高.经测试现在小明打140个字所用时间与小海打175个字所用时间相同,小明平均每分钟比小海少打15个字.请求出小明平均每分钟打字的个数.

【答案】小明平均每分钟打60个字.

【解析】

设小明平均每分钟打个字,则小海平均每分钟打个字,根据“小明打140个字所用时间与小海打175个字所用时间相同”列出分式方程,求解(并验证)即可.

解:设小明平均每分钟打个字,则小海

平均每分钟打个字.

根据题意,得.

解得 .

经检验:是原方程的解,且符合题意.

答:小明平均每分钟打60个字.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,直线AB分别与x轴、y轴交于AB两点,OC平分∠AOBAB于点C,点D为线段AB上一点,过点DDEOCy轴于点E,已知AOmBOn,且mn满足n28n+16+|n2m|0

1)求AB两点的坐标;

2)若点DAB中点,求OE的长;

3)如图2,若点Px,﹣2x+4)为直线ABx轴下方的一点,点Ey轴的正半轴上一动点,以E为直角顶点作等腰直角PEF,使点F在第一象限,且F点的横、纵坐标始终相等,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,的中点,是边上一动点,连结,取的中点,连结.小梦根据学习函数的经验,对的面积与的长度之间的关系进行了探究:

1)设的长度为的面积,通过取边上的不同位置的点,经分析和计算,得到了的几组值,如下表:

0

1

2

3

4

5

6

3

1

0

2

3

根据上表可知,____________.

2)在平面直角坐标系中,画出(1)中所确定的函数的图象.

3)在(1)的条件下,令的面积为.

①用的代数式表示.

②结合函数图象.解决问题:当时,的取值范围为______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,甲、乙两人在玩转盘游戏时,准备了两个可以自由转动的转盘A,B,每个转盘被分成面积相等的几个扇形,并在每一个扇形内标上数字.游戏规则:同时转动两个转盘,当转盘停止后,指针所指区域的数字之和为0时,甲获胜;数字之和为1时,乙获胜.如果指针恰好指在分割线上,那么重转一次,直到指针指向某一区域为止.

(1)用画树状图或列表法求乙获胜的概率;

(2)这个游戏规则对甲、乙双方公平吗?请判断并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】20191218日,新版《北京市生活垃圾管理条例》正式发布,并将在202051日起正式实施,这标志着北京市生活垃圾分类将正式步入法制化、常态化、系统化轨道.目前,相关配套设施的建设已经开启.如图,计划在某小区道路l上建一个智能垃圾分类投放点O,使得道路l附近的两栋住宅楼B到智能垃圾分类投放点O的距离相等.

1)请在图中利用尺规作图(保留作图痕迹,不写作法),确定点O的位置;

2)确定点O位置的依据为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某航空公司经营ABCD四个城市之间的客运业务.若机票价格y(元)是两城市间的距离x(千米)的一次函数.今年五一期间部分机票价格如下表所示:

起点

终点

距离x(千米)

价格y(元)

A

B

1000

2050

A

C

800

1650

A

D

2550

B

C

600

C

D

950

1)求该公司机票价格y(元)与距离x(千米)的函数关系式;

2)利用(1)中的关系式将表格填完整;

3)判断ABCD这四个城市中,哪三个城市在同一条直线上?请说明理由;

4)若航空公司准备从旅游旺季的7月开始增开从B市直接飞到D市的旅游专线,且按以上规律给机票定价,那么机票定价应是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】是等边三角形,点在射线上,延长,使.

1)如图(1),当点为线段中点时,求证:.

2)如图(2),当点在线段的延长线上时,还成立吗?若成立,请给予证明;若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,E是正方形ABCDCD边上一点,以点A为中心把△ADE顺时针旋转90°。

(1)在图中画出旋转后的图形;

(2)若旋转后E点的对应点记为M,点FBC上,且∠EAF=45°,连接EF。

①求证:△AMF≌△AEF;

②若正方形的边长为6,AE=,求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在Rt△ABC与Rt△OCD中,∠ACB=∠DCO=90°,O为AB的中点.

1求证:∠B=∠ACD.

2已知点E在AB上,且BC2=ABBE.

i若tan∠ACD=,BC=10,求CE的长;

ii试判定CD与以A为圆心、AE为半径的⊙A的位置关系,并请说明理由.

查看答案和解析>>

同步练习册答案