【题目】如图,已知一次函数的图像与轴交于点,一次函数的图像与轴交于点,且与轴以及一次函数的图像分别交于点、,点的坐标为.
(1)关于、的方程组的解为______________.
(2)关于的不等式的解集为__________________.
(3)求四边形的面积;
(4)在轴上是否存在点,使得以点,,为顶点的三角形是直角三角形?若存在,求出点的坐标:若不存在,请说明理由.
【答案】(1);(2);(3)4;(4)点坐标为或.
【解析】
(1)把D(-2,m)代入y=x-2可得D的坐标.由图象可得结论;
(2)观察图象可得结论;
(3)过点D作DH⊥AB于H.根据S四边形OADC=SΔABD-SΔOBC计算即可;
(4)分三种情况讨论:①当点E为直角顶点时,过点D作DE1⊥x轴于E1,即可得出结论;
②当点C为直角顶点时,x轴上不存在点E;③当点D为直角顶点时,过点D作DE2⊥CD交x轴于点E2.设E2(t,0),利用勾股定理即可得出结论.
(1)∵D(-2,m)在y=x-2上,
∴m=-2-2=-4,
∴D(-2,-4).
由图象可知:关于x、y的方程组的解为;
(2)由图象可知:关于x的不等式x-2≥4x+b的解集为x≤-2;
(3)如图1,过点D作DH⊥AB于H.
由(1)知D(-2,-4),
∴DH=2.
在y=x-2中,当x=0时,y=-2,
∴A(0,-2).
把D(-2,-4)代入y=4x+b得:-4=4×(-2)+b,解得:b=4.
∴B(0,4),
∴直线BD的函数表达式为y=4x+4.
∴AB=4-(-2)=6,
∴SΔABD=ABDH=×6×2=6.
在y=4x+4中,当y=0时,0=4x+4,解得:x=-1.
∴C(-1,0),
∴OC=1.
∵B(0,4),
∴OB=4,
∴SΔOBC=OBOC=×4×1=2,
∴S四边形OADC=SΔABD-SΔOBC=6-2=4.
(4)如图2,①当点E为直角顶点时,过点D作DE
∵D(-2,-4),
∴E1(-2,0)
②当点C为直角顶点时,x轴上不存在点E.
③当点D为直角顶点时,过点D作DE2⊥CD交x轴于点E2.设E2(t,0).
∵C(-1,0),E1(-2,0),
∴CE2=-1-t,E1E2=-2-t.
∵D(-2,-4),
∴DE1=4,CE1=-1-(-2)=1.
在中,由勾股定理得:.
在中,由勾股定理得:.
在中,由勾股定理得:.
∴(-1-t)2=t2+4t+20+17
解得:t=-18.
∴E2 (-18,0).
综合上所述:点E坐标为(-2,0)或(-18,0).
科目:初中数学 来源: 题型:
【题目】在初中阶段的函数学习中,我们经历了“确定函数的表达式——利用函数图象研究其性质——运用函数解决问题”的学习过程. 在画函数图象时,我们通过描点、平移、对称的方法画出了所学的函数图象. 同时,我们也学习了绝对值的意义,结合上面经历的学习过程,现在来解决下面的问题
在函数中,自变量的取值范围是全体实数,下表是与的几组对应值:
0 | 1 | 2 | 3 | ||||
y | … | 0 | 1 | 2 | 3 | 2 | … |
(1)根据表格填写:_______.
(2)化简函数解析式:
当时,_______;
当时,______.
(3)在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象并解决以下问题;
①该函数的最大值为_______.
②若为该函数图象上不同的两点,则________.
③根据图象可得关于的方程的解为_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,,,在边上,在线段上,,是等边三角形,边交边于点,边交边于点.
求证:;
当为何值时,以为圆心,以为半径的圆与相切?
设,五边形的面积为,求与之间的函数解析式(要求写出自变量的取值范围);当为何值时,有最大值?并求的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,直线AB分别与x轴、y轴交于A、B两点,OC平分∠AOB交AB于点C,点D为线段AB上一点,过点D作DE∥OC交y轴于点E,已知AO=m,BO=n,且m、n满足n2﹣8n+16+|n﹣2m|=0.
(1)求A、B两点的坐标;
(2)若点D为AB中点,求OE的长;
(3)如图2,若点P(x,﹣2x+4)为直线AB在x轴下方的一点,点E是y轴的正半轴上一动点,以E为直角顶点作等腰直角△PEF,使点F在第一象限,且F点的横、纵坐标始终相等,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个不透明的布袋中装有4个只有颜色不同的球,其中1个黄球、1个蓝球、2个红球.
(1)任意摸出1个球,记下颜色后不放回,再任意摸出1个球.求两次摸出的球恰好都是红球的概率(要求画树状图或列表);
(2)现再将n个黄球放入布袋,搅匀后,使任意摸出1个球是黄球的概率为,求n的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠ACD是△ABC的外角,CE平分∠ACB,交AB于E,CF平分∠ACD,EF//BC交AC、CF于M、F,若EM=3,则CE2+CF2 的值为( )
A.36B.9C.6D.18
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,是的中点,是边上一动点,连结,取的中点,连结.小梦根据学习函数的经验,对的面积与的长度之间的关系进行了探究:
(1)设的长度为,的面积,通过取边上的不同位置的点,经分析和计算,得到了与的几组值,如下表:
0 | 1 | 2 | 3 | 4 | 5 | 6 | |
3 | 1 | 0 | 2 | 3 |
根据上表可知,______,______.
(2)在平面直角坐标系中,画出(1)中所确定的函数的图象.
(3)在(1)的条件下,令的面积为.
①用的代数式表示.
②结合函数图象.解决问题:当时,的取值范围为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】是等边三角形,点在射线上,延长至,使.
(1)如图(1),当点为线段中点时,求证:.
(2)如图(2),当点在线段的延长线上时,还成立吗?若成立,请给予证明;若不成立,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com