分析 由勾股定理求AB=4,再根据旋转的性持和角平分线可知:点A的对应点E在直线CB上,BE=2,利用勾股定理可求AE的长.
解答
解:∵CD是∠ACB的平分线,
∴将△ABC沿直线CD翻折,点A的对应点E在直线CB上,
∵∠ABC=90°,AC=5,BC=3,
∴AB=4,
由旋转得:EC=AC=5,
∴BE=5-3=2,
在Rt△ABE中,由勾股定理得:AE=$\sqrt{A{B}^{2}+B{E}^{2}}$=$\sqrt{{4}^{2}+{2}^{2}}$=2$\sqrt{5}$,
故答案为:2$\sqrt{5}$.
点评 本题考查了翻折变换的性质、勾股定理,明确折叠前后的两个角相等,两边相等;在图形中确定直角三角形,如果知道了一个直角三角形的两条边,可以利用勾股定理求第三边.
科目:初中数学 来源: 题型:选择题
| A. | $\frac{2}{3}$π≤s≤π | B. | $\frac{1}{2}$π≤s≤π | C. | $\frac{\sqrt{3}}{3}$π≤s≤π | D. | 0≤s≤π |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\frac{12}{5}$ | B. | $\frac{5}{12}$ | C. | $\frac{5}{13}$ | D. | $\frac{12}{13}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com