精英家教网 > 初中数学 > 题目详情

【题目】为了解学生对各种球类运动的喜爱程度,小明采取随机抽样的方法对他所在学校的部分学生进行问卷调查(每个被调查的学生必须选择而且只能选择其中一种项目),对调查结果进行统计后,绘制了下面的统计图(1)和图(2).

1)此次被调查的学生共有___人,m_____

2)求喜欢“乒乓球”的学生的人数,并将条形统计图补充完整;

3)若该校有2000名学生,估计全校喜欢“足球”的学生大约有多少人?

【答案】15020;(25人,图见解析;(3400

【解析】

1)利用喜欢篮球的人数与所占总体的百分比可得总人数,利用喜欢足球的人数占总体的百分比可得的值,

2)利用总人数与各部分的人数差可得答案,依据答案补全条形统计图即可,

3)利用样本中喜欢足球所占的百分比乘以总人数即可得到答案.

解:(1)由(人),所以被调查的学生共有50人,

所以

故答案为:5020

2)喜欢乒乓球的有:502010155(人)

如图所示:

3)喜欢足球的大约有:2000400(人)

答:估计全校喜欢“足球”的学生人数为400人.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】综合与探究: 如图,直线的表达式为,与轴交于点,直线轴于点交于点,过点轴于点

1)求点的坐标;

2)求直线的表达式;

3)求的值;

4)在轴上是否存在点,使得?若存在,请直接写出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形AOCB的顶点B在反比例函数,x0)的图像上,且AB=3BC=8.若动点EA开始沿ABB以每秒1个单位长度的速度运动,同时动点FB开始沿BCC以每秒2个单位长度的速度运动,当其中一个动点到达端点时,另一个动点随之停止运动,设运动时间为t秒.

1)求反比例函数的表达式.

2)当t=1时,在y轴上是否存在点D,使△DEF的周长最小?若存在,请求出△DEF的周长最小值;若不存在,请说明理由.

3)在双曲线上是否存在一点M,使以点BEFM为顶点的四边形是平行四边形?若存在,请求出满足条件t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列材料:如图(1),在四边形ABCD中,若AB=ADBC=CD,则把这样的四边形称之为筝形.

(1)写出筝形的两个性质(定义除外)

;②

(2)如图(2),在平行四边形ABCD中,点EF分别在BCCD上,且AE=AF,∠AEC=AFC.求证:四边形AECF是筝形.

(3)如图(3),在筝形ABCD中,AB=AD=26BC=DC=25AC=17,求筝形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】201923日至2019220日,第一届成都金沙太阳节在金沙遗址博物馆成功举办,用世界文明展览,主题灯展,园林花艺,美食演绎等一系列文化活动,与玛雅这一著名的中美洲文明结下不解之缘,为成都人打造了一个博物馆里的文化年”.春节当天,小杰于下午点乘车从家出发,当天按原路返回.如图,是小杰出行的过程中,他距家的距离(千米)与他离家的时间(小时)之间的图像.根据图像,完成下面的问题:

1)小杰家距金沙遗址博物馆 千米,他乘车去金沙遗址博物馆的速度是 千米/小时;

2)已知晚上点时,小杰距家千米,请通过计算说明他何时才能回到家?

3)请直接写出小杰回家过程中的关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某大型超市从生产基地购进一批水果,运输过程中质量损失10%,假设不计超市其他费用,如果超市要想至少获得20%的利润,那么这种水果的售价在进价的基础上应至少提高【 】

A.40% B.33.4% C.33.3% D.30%

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(【材料阅读】阅读下列一段文字,然后回答下列问题.

已知平面内两点Mx1y1)、Nx2y2),则这两点间的距离可用下列公式计算:

MN=

例如:已知P31)、Q12),则这两点间的距离PQ==

直接应用

1)已知A2-3)、B-45),试求AB两点间的距离;

2)已知ABC的顶点坐标分别为A04)、B﹣12)、C42),你能判定ABC的形状吗?请说明理由.

深度应用

3如图,在平面直角坐标系xOy中,二次函数y=x2﹣4的图象与x轴相交于两点AB(点A在点B的左边)

求点AB的坐标;

设点Pmn)是以点C34)为圆心、1为半径的圆上一动点,求PA2+PB2的最大值;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(模型建立)

1)如图1,等腰RtABC中,∠ACB90°CBCA,直线ED经过点C,过点AADED于点D,过点BBEED于点E,求证:△BEC≌△CDA

(模型应用)

2)如图2,已知直线l1yx+3x轴交于点A,与y轴交于点B,将直线l1绕点A逆时针旋转45°至直线l2;求直线l2的函数表达式;

3)如图3,平面直角坐标系内有一点B3,﹣4),过点BBAx轴于点ABCy轴于点C,点P是线段AB上的动点,点D是直线y=﹣2x+1上的动点且在第四象限内.试探究△CPD能否成为等腰直角三角形?若能,求出点D的坐标,若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有四张背面相同的纸牌ABCD,其正面分别划有四个不同的几何图形(如图).小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸出一张.

1)用树状图(或列表法)表示两次模牌所有可能出现的结果(纸牌可用ABCD表示);

2)求摸出两张牌面图形既是中心对称图形又是轴对称图形的纸牌的概率.

查看答案和解析>>

同步练习册答案