4£®¶¨Ò壺¶ÔÓÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖеÄÏß¶ÎPQºÍµãM£¬ÔÚ¡÷MPQÖУ¬µ±PQ±ßÉϵĸßΪ2ʱ£¬³ÆMΪPQµÄ¡°µÈ¸ßµã¡±£¬³Æ´ËʱMP+MQΪPQµÄ¡°µÈ¸ß¾àÀ롱£®
£¨1£©ÈôP£¨1£¬2£©£¬Q£¨4£¬2£©£®
¢ÙÔÚµãA£¨1£¬0£©£¬B£¨$\frac{5}{2}$£¬4£©£¬C£¨0£¬3£©ÖУ¬PQµÄ¡°µÈ¸ßµã¡±ÊÇA¡¢B£»
¢ÚÈôM£¨t£¬0£©ÎªPQµÄ¡°µÈ¸ßµã¡±£¬ÇóPQµÄ¡°µÈ¸ß¾àÀ롱µÄ×îСֵ¼°´ËʱtµÄÖµ£®
£¨2£©ÈôP£¨0£¬0£©£¬PQ=2£¬µ±PQµÄ¡°µÈ¸ßµã¡±ÔÚyÖáÕý°ëÖáÉÏÇÒ¡°µÈ¸ß¾àÀ롱×îСʱ£¬Ö±½Óд³öµãQµÄ×ø±ê£®

·ÖÎö £¨1£©¸ù¾Ý¡°µÈ¸ßµã¡±µÄ¸ÅÄî½â´ð¼´¿É£»
£¨2£©¢ÙÏÈÈ·¶¨³öµãP¹ØÓÚxÖáµÄ¶Ô³ÆµãP¡ä£¬ÔÙ¸ù¾Ý×î¶Ì·¾¶µÄÇ󷨼´¿ÉÈ·¶¨×îС¾àÀ룻¢ÚÏÈÖ¤Ã÷¡°µÈ¸ß¾àÀ롱×îСʱ¡÷MPQΪµÈÑüÈý½ÇÐΣ¬ÔÙÀûÓù´¹É¶¨ÀíÇó³öµãQ×ø±ê¼´¿É£®

½â´ð ½â£º£¨1£©¢Ù¡ßP£¨1£¬2£©£¬Q£¨4£¬2£©£¬
¡àÔÚµãA£¨1£¬0£©£¬B£¨$\frac{5}{2}$£¬4£©µ½PQµÄ¾àÀëΪ2£®
¡àPQµÄ¡°µÈ¸ßµã¡±ÊÇA¡¢B£¬
¹Ê´ð°¸Îª£ºA¡¢B£»
¢ÚÈçͼ1£¬×÷µãP¹ØÓÚxÖáµÄ¶Ô³ÆµãP¡ä£¬Á¬½ÓP¡äQ£¬P¡äQÓëxÖáµÄ½»µã¼´Îª¡°µÈ¸ßµã¡±M£¬´Ëʱ¡°µÈ¸ß¾àÀ롱×îС£¬×îСֵΪÏß¶ÎP¡äQµÄ³¤£®
¡ßP £¨1£¬2£©£¬
¡àP¡ä£¨1£¬-2£©£®

ÉèÖ±ÏßP¡äQµÄ±í´ïʽΪy=kx+b£¬
¸ù¾ÝÌâÒ⣬ÓÐ$\left\{\begin{array}{l}{k+b=-2}\\{4k+b=2}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{k=\frac{4}{3}}\\{b=-\frac{10}{3}}\end{array}\right.$£®

¡àÖ±ÏßP¡äQµÄ±í´ïʽΪ$y=\frac{4}{3}x-\frac{10}{3}$£®
µ±y=0ʱ£¬½âµÃ$x=\frac{5}{2}$£®
¼´$t=\frac{5}{2}$£®
¸ù¾ÝÌâÒ⣬¿ÉÖªPP¡ä=4£¬PQ=3£¬PQ¡ÍPP¡ä£¬
¡à$P'Q=\sqrt{PP{'^2}+P{Q^2}}=5$£®
¡à¡°µÈ¸ß¾àÀ롱×îСֵΪ5£®
£¨2£©Èçͼ2£¬¹ýPQµÄ¡°µÈ¸ßµã¡±M×÷MN¡ÍPQÓÚµãN£¬

¡àPQ=2£¬MN=2£®
ÉèPN=x£¬ÔòNQ=2-x£¬
ÔÚRt¡÷MNPºÍRt¡÷MNQÖÐÓɹ´¹É¶¨ÀíµÃ£º
MP2=22+x2=4+x2£¬MQ2=22+£¨2-x£©2=x2-4x+8£¬
¡àMP2+MQ2=2x2-4x+12=2£¨x-1£©2+10£¬
¡ßMP2+MQ2¡Ü£¨MP+MQ£©2£¬
¡àµ±MP2+MQ2×îСʱMP+MQÒ²×îС£¬´Ëʱx=1£¬
¼´PN=NQ£¬
¡à¡÷MPQΪµÈÑüÈý½ÇÐΣ¬
¡àMP=MQ=$\sqrt{{2}^{2}+{1}^{2}}=\sqrt{5}$£¬
Èçͼ3£¬ÉèQ×ø±êΪ£¨x£¬y£©£¬¹ýµãQ×÷QE¡ÍyÖáÓÚµãE£¬

ÔòÔÚRt¡÷MNPºÍRt¡÷MNQÖÐÓɹ´¹É¶¨ÀíµÃ£º
QE2=QP2-OE2=22-y2=4-y2£¬$Q{E}^{2}=Q{M}^{2}-M{E}^{2}=£¨\sqrt{5}£©^{2}-£¨\sqrt{5}-y£©^{2}$=$2\sqrt{5}y-{y}^{2}$£¬
¡à4-${y}^{2}=2\sqrt{5}y-{y}^{2}$£®
½âµÃy=$\frac{2\sqrt{5}}{5}$£®
$Q{E}^{2}=4-{y}^{2}=4-£¨\frac{2\sqrt{5}}{5}£©^{2}=\frac{16}{5}$£¬
µ±µãQÔÚµÚÒ»ÏóÏÞʱx=$\frac{4\sqrt{5}}{5}$£¬µ±µãQÔÚµÚ¶þÏóÏÞʱx=-$\frac{4\sqrt{5}}{5}$£¬
¡àQ£¨$\frac{{4\sqrt{5}}}{5}$£¬$\frac{{2\sqrt{5}}}{5}$£©»òQ£¨$-\frac{{4\sqrt{5}}}{5}$£¬$\frac{{2\sqrt{5}}}{5}$£©£®

µãÆÀ ±¾Ì⿼²éÁ˶Զ¨ÒåиÅÄîµÄÀí½âºÍ×î¶Ì·¾¶ÎÊÌ⣬ȷ¶¨³öP¹ØÓÚxÖáµÄ¶Ô³ÆµãP¡äµÄλÖÃÊǽâ¾ö±¾ÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖª£ºÈçͼ£¬µãE¡¢F·Ö±ðÊÇ?ABCDÖÐAB¡¢DC±ßÉϵĵ㣬ÇÒAE=CF£¬Á¬½ÓDE¡¢EF£®ÇóÖ¤£ºËıßÐÎDEBFÊÇÆ½ÐÐËıßÐΣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÎªÓ­½Ó¡°ÁùÒ»¡±¶ùͯ½Ú£¬Ä³¶ùÍ¯Æ·ÅÆÍæ¾ßרÂôµê¹º½øÁËA¡¢BÁ½ÀàÍæ¾ß£¬ÆäÖÐAÀàÍæ¾ßµÄ½ø¼Û±ÈBÀàÍæ¾ßµÄ½ø¼Ûÿ¸ö¶à3Ôª£¬¾­µ÷²é£ºÓÃ900Ôª¹º½øAÀàÍæ¾ßµÄÊýÁ¿ÓëÓÃ750Ôª¹º½øBÀàÍæ¾ßµÄÊýÁ¿Ïàͬ£®ÉèAÀàÍæ¾ßµÄ½ø¼ÛΪmÔª/¸ö£¬¸ù¾ÝÌâÒâ¿ÉÁзÖʽ·½³ÌΪ£¨¡¡¡¡£©
A£®$\frac{900}{m}=\frac{750}{m+3}$B£®$\frac{900}{m+3}=\frac{750}{m}$C£®$\frac{900}{m}=\frac{750}{m-3}$D£®$\frac{900}{m-3}=\frac{750}{m}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÒÔÕý·½ÐÎABCDµÄ¶Ô½ÇÏßAC¡¢BDËùÔÚÖ±ÏßÎª×ø±êÖᣬ½¨Á¢Æ½ÃæÖ±½Ç×ø±êϵ£¬ÈçͼËùʾ£¬ÒÑÖªµãAµÄ×ø±êÊÇ£¨-$\sqrt{2}$£¬0£©£¬ÏÖ½«Õý·½ÐÎABCDÈÆÔ­µãO˳ʱÕëÐýת45¡ã£¬ÔòÐýתºóµãCµÄ¶ÔÓ¦µã×ø±êÊÇ£¨¡¡¡¡£©
A£®£¨$\sqrt{2}$£¬$\sqrt{2}$£©B£®£¨$\sqrt{2}$£¬-$\sqrt{2}$£©C£®£¨-1£¬1£©D£®£¨1£¬-1£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®Èô£¨x+2£©£¨x-3£©£¾0£¬ÔòxµÄȡֵ·¶Î§ÊÇx£¾3»òx£¼-2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®·´±ÈÀýº¯Êý$y=\frac{2}{x}$µÄͼÏóÉÏÓÐÈý¸öµã£¨x1£¬y1£©£¬£¨x2£¬y2£©£¬£¨x3£¬y3£©£¬ÆäÖÐx1£¼x2£¼0£¼x3£¬Ôòy1¡¢y2¡¢y3µÄ´óС¹ØÏµÊÇ£¨¡¡¡¡£©
A£®y1£¼y2£¼y3B£®y2£¼y1£¼y3C£®y3£¼y1£¼y2D£®y3£¼y2£¼y1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®Èçͼ£¬µãCÊǰëÔ²OµÄÖ±¾¶ABµÄÑÓ³¤ÏßÉÏÒ»µã£®CDÓë°ëÔ²OÏàÇУ¬DΪÇе㣬¹ýµãD×÷DE¡ÎAB½»°ëÔ²OÓÚµãE£®ÈôËıßÐÎOCDEÊÇÆ½ÐÐËıßÐΣ¬CD=4£¬ÔòEDµÄ³¤Îª£¨¡¡¡¡£©
A£®4B£®4$\sqrt{2}$C£®2$\sqrt{6}$D£®3$\sqrt{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®Èçͼ£¬½«Rt¡÷ABCÈÆÖ±½Ç¶¥µãC˳ʱÕëÐýת90¡ã£¬µÃµ½¡÷A1B1C£¬Á¬½áAA1£¬Èô¡ÏAA1B1=15¡ã£¬Ôò¡ÏBµÄ¶ÈÊýÊÇ60¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®¼×¾­ÏúÉÌ¿â´æÓÐ1200ǧ¿ËAÒ©²Ä£¬Ã¿Ç§¿Ë½ø¼Û400Ôª£¬Ã¿Ç§¿ËÊÛ¼Û500Ôª£¬Ò»ÄêÄÚ¿ÉÂôÍ꣬ÏÖÊг¡Á÷ÐÐBÒ©²Ä£¬Ã¿Ç§¿Ë½ø¼Û300Ôª£¬Ã¿Ç§¿ËÊÛ¼Û600Ôª£¬µ«Ò»ÄêÄÚÖ»ÔÊÐí¾­ÏúÉÌÒ»´ÎÐÔ¶©¹ºBÒ©²Ä£¬Ò»ÄêÄÚBÒ©²ÄÏúÊÛÎÞ»ýѹ£¬Òò¼×¾­ÏúÉÌÎÞÁ÷¶¯×ʽð¿ÉÓã¬Ö»ÓеͼÛתÈÃAÒ©²Ä£¬ÓÃתÈÃÀ´µÄ×ʽ𹺽øBÒ©²Ä£¬²¢ÏúÊÛ£¬¾­ÓëÒÒ¾­ÏúÉÌЭÉÌ£¬¼×¡¢ÒÒË«·½´ï³ÉתÈÃЭÒ飬תÈü۸ñy£¨Ôª/ǧ¿Ë£©ÓëתÈÃÊýÁ¿x£¨Ç§¿Ë£©Ö®¼äµÄº¯Êý¹ØÏµÊ½Îªy=-$\frac{1}{10}$x+360£¨100¡Üx¡Ü1200£©£¬Èô¼×¾­ÏúÉÌתÈÃxǧ¿ËAÒ©²Ä£¬Ò»ÄêÄÚËù»ñ×ÜÀûÈóΪW£¨Ôª£©£®
£¨1£©ÇóתÈúóÊ£ÓàµÄAÒ©²ÄµÄÏúÊÛ¿îQ1£¨Ôª£©Óëx£¨Ç§¿Ë£©Ö®¼äµÄº¯Êý¹ØÏµÊ½£»
£¨2£©ÇóBÒ©²ÄµÄÏúÊÛ¿îQ2£¨Ôª£©Óëx£¨Ç§¿Ë£©Ö®¼äµÄº¯Êý¹ØÏµÊ½£»
£¨3£©ÇóW£¨Ôª£©Óëx£¨Ç§¿Ë£©Ö®¼äµÄº¯Êý¹ØÏµÊ½£¬²¢ÇóWµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸