分析 根据旋转的性质可得AC=A1C,然后判断出△ACA1是等腰直角三角形,根据等腰直角三角形的性质可得∠CAA1=45°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠A1B1C,然后根据旋转的性质可得∠B=∠A1B1C.
解答 解:∵Rt△ABC绕直角顶点C顺时针旋转90°得到△A1B1C,
∴AC=A1C,
∴△ACA1是等腰直角三角形,
∴∠CAA1=15°,
∴∠A1B1C=∠1+∠CAA1=15°+45°=60°,
由旋转的性质得∠B=∠A1B1C=60°,
故答案为60°.
点评 本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com