精英家教网 > 初中数学 > 题目详情
15.(1)分式$\frac{1}{8a{b}^{3}}$、$\frac{1}{6{a}^{4}b}$的最简公分母是24a4b3
(2)分式$\frac{1}{x+y}$、$\frac{1}{{x}^{2}-{y}^{2}}$、$\frac{1}{x-y}$的最简公分母是(x+y)(x-y).

分析 确定最简公分母的方法是:
(1)取各分母系数的最小公倍数;
(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;
(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.

解答 解:(1)分式$\frac{1}{8a{b}^{3}}$、$\frac{1}{6{a}^{4}b}$的分母分别是8ab3、6a4b,故最简公分母是24a4b3
(2)分式$\frac{1}{x+y}$、$\frac{1}{{x}^{2}-{y}^{2}}$、$\frac{1}{x-y}$的分母分别是x+y、x2-y2=(x+y)(x-y),x-y,故最简公分母是
(x+y)(x-y).
故答案为24a4b3;(x+y)(x-y).

点评 本题考查了最简公分母的定义及求法.通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.一般方法:①如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里.②如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

5.甲地有43人,乙地有20人,现从甲地调若干人到乙地,使甲地的人数是乙地的$\frac{1}{2}$,应从甲地调出多少人到乙地?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.某校七年级(1)班组织课外活动,准备举行一次羽毛球比赛,于是到商店脚买羽毛球和羽毛球拍,询问两家商店后得知,每副球拍25元,每个球2元,但甲商店说:“买羽毛球和球拍都打9”;乙商店说:“买一副球拍赠送2个球.
(1)准备花90无钱全部用于买2副球拍及若干个球,到哪家商店购买更加合算?
(2)若必须买2副球拍,则再买多少个球时两家商店一样合算?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,在△ABC中,AB=AC,P为BC上一点,PD⊥AB于点D,PM⊥AC于点M,CN为高,若AC=8,S△ABC=20,求PD+PM的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,矩形OABC的顶点坐标分别为O(0,0)、A(6,0)、B(6,4)、C(0,4),画出以点O为位似中心,矩形OABC的位似图形O′A′B′C′,使它的面积等于矩形OABC面积的$\frac{1}{4}$,并分别写出点A′,B′,C′的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.若二次函数y=2x2+mx+1图象的对称轴是直线x=1,则m=-4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.计算
(1)(-5)2×(-$\frac{4}{5}$)×(-2)3
(2)-32×5-(-2)4×4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,直线1和m相交于点O
(1)先作出△ABC关于直线1对称的△A′B′C′,再作出△A′B′C′关于直线m对你的△A1B1C1
(2)△ABC与△A1B1C1关于某条直线对称吗?若对称,请画出对称轴.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.D、E分别是△ABC的边BA、CA延长线上的点,且DE∥BC,若△ADE与△ABC的面积比为2:9,CE=6+2$\sqrt{2}$,则DE:BC=$\frac{\sqrt{2}}{3}$,AE=2.

查看答案和解析>>

同步练习册答案