【题目】如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,-2).
(1)求直线AB的解析式;
(2)直线AB上是否存在点C,使△BOC的面积为2?若存在,求出点C的坐标;若不存在,请说明理由.
【答案】(1);(2)存在,C(2,2)或C(-2,-6).
【解析】
(1)设直线AB的解析式为,将点A(1,0)、点B(0,﹣2)分别代入解析式即可组成方程组,从而得到AB的解析式;
(2)设点P的坐标为(x,y),根据三角形面积公式以及S△BOC=2求出C的横坐标,再代入直线即可求出y的值,从而得到其坐标.
解:(1)设直线AB的解析式为(),
∵直线AB过点A(1,0)、点B(0,﹣2),
∴,解得:,
∴直线AB的解析式为;
(2)设点C的坐标为(x,y),∵S△BOC=2,∴,解得x=±2,
当x=2时,∴y=2×2﹣2=2,当时,
∴,
∴点C的坐标是(2,2)或C(-2,-6).
科目:初中数学 来源: 题型:
【题目】下图是蜘蛛结网过程示意图,一只蜘蛛先以为起点结六条线,后,再从线上某点开始按逆时针方向依次在,,,,,…上结网,若将各线上的结点依次记为1、2、3、4、5、6、7、8、…,那么第2020个结点在( )
A.线上B.线OD上C.线OE上D.线上
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知如图,抛物线与轴交于点A和点C(2,0),与 轴交于点D,将△DOC绕点O逆时针旋转90°后,点D恰好与点A重合,点C与点B重合.
(1)直接写出点A和点B的坐标;
(2)求和的值;
(3)已知点E是该抛物线的顶点,求证:AB⊥EB.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知AB是⊙O的直径,AB=2,点C,点D在⊙O上,CD=1,直线AD,BC交于点E.
(Ⅰ)如图1,若点E在⊙O外,求∠AEB的度数;
(Ⅱ)如图2,若点E在⊙O内,求∠AEB的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC为直角三角形,∠C=90°,BC=2cm,∠A=30°,四边形DEFG为矩形,DE=2cm,EF=6cm,且点C、B、E、F在同一条直线上,点B与点E重合.Rt△ABC以每秒1cm的速度沿矩形DEFG的边EF向右平移,当点C与点F重合时停止.设Rt△ABC与矩形DEFG的重叠部分的面积为ycm2,运动时间xs.能反映ycm2与xs之间函数关系的大致图象是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(探索发现)
如图①,是一张直角三角形纸片,,小明想从中剪出一个以为内角且面积最大的矩形,经过多次操作发现,当沿着中位线、剪下时,所得的矩形的面积最大,随后,他通过证明验证了其正确性,并得出:矩形的最大面积与原三角形面积的比值为_____________.
(拓展应用)
如图②,在中,,边上的高,矩形的顶点、分别在边、上,顶点、在边上,则矩形面积的最大值为_________.(用含的代数式表示)
(灵活应用)
如图③,有一块“缺角矩形”,,,,,小明从中剪出了一个面积最大的矩形(为所剪出矩形的内角),求该矩形的面积.
(实际应用)
如图④,现有一块四边形的木板余料,经测量,,,且,,木匠徐师傅从这块余料中裁出了顶点、在边上且面积最大的矩形,求该矩形的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是楼梯一部分示意图,楼梯台阶宽度均为,高度均为,且,均与楼面垂直,点,分别是,的中点,,,.
(1)判断与的位置关系,并说明理由;
(2)求的值;
(3)求点到水平楼面的距离(精确到).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为增强学生的安全意识,我市某中学组织初三年级1000名学生参加了“校园安全知识竞赛”,随机抽取了一个班学生的成绩进行整理,分为,,,四个等级,并把结果整理绘制成条形统计图与扇形统计图(部分),请依据如图提供的信息,完成下列问题:
(1)请估计本校初三年级等级为的学生人数;
(2)学校决定从得满分的3名女生和2名男生中随机抽取3人参加市级比赛,请求出恰好抽到2名女生和1名男生的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com