精英家教网 > 初中数学 > 题目详情

【题目】如图是楼梯一部分示意图,楼梯台阶宽度均为,高度均为,且均与楼面垂直,点分别是的中点,

1)判断的位置关系,并说明理由;

2)求的值;

3)求点到水平楼面的距离(精确到).

【答案】1,理由见解析;(22;(3

【解析】

1)由FB平行且相等,得出四边形是平行四边形,进而得出

2)延长交于点K,连接,在Rt中,求出tan,根据平行线的性质得出∠EFP=,由此得解;

3)过点P,交AF于点,根据的值得出的数量关系,在Rt中,运用勾股定理求出,进而求出到水平楼面的距离.

1,理由:

均与楼面垂直

又∵

=

∴四边形是平行四边形

2)如图,延长,交于点K,连接

均与楼面垂直,

∴△是直角三角形,

∵楼梯台阶宽度均为分别是的中点,

KA=

∵楼梯高度均为

Rt中,tan=

∴∠EFP=

易证

∴∠=

tanEFP=tan=2

3)过点P,交AF于点,

Rt中,tanEFP=2

根据勾股定理,,即

cm

P到水平楼面的距离为16×5+15-=95-91.4cm

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】小方与小辉在玩军棋游戏,他们定义了一种新的规则,用军棋中的工兵连长地雷比较大小,共有6个棋子,分别为1工兵2连长3地雷游戏规则如下:①游戏时,将棋反面朝上,两人随机各摸一个棋子进行比赛,先摸者摸出的棋不放回;②工兵地雷地雷连长连长工兵;③相同棋子不分胜负.

1)若小方先摸,则小方摸到排长的事件是 ;若小方先摸到了连长,小辉在剩余的5个棋子中随机摸一个,则这一轮中小方胜小辉的概率为

2)如果先拿走一个连长,在剩余的5个棋子中小方先摸一个棋子,然后小辉在剩余的4个棋子中随机摸一个,求这一轮中小方获胜的概率

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线ABx轴交于点A10),与y轴交于点B0-2).

1)求直线AB的解析式;

2)直线AB上是否存在点C,使△BOC的面积为2?若存在,求出点C的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个不透明的口袋中装有4个分别标有数1234的小球,它们的形状、大小完全相同,小红先从口袋里随机摸出一个小球记下数为x,小颖在剩下的3个球中随机摸出一个小球记下数为y,这样确定了点P(xy),请用“列表法”或“树状图法”求点P(xy)在函数y=-x+5图象上的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知的顶点,若将先沿轴进行第一次对称变换,所得图形沿轴进行第二次对称变换,轴对称变换的对称轴遵循轴、轴、轴、轴…的规律进行,则经过第2018次变换后,顶点坐标为()

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2019年底,2020年初我国爆发了新冠肺炎疫情,为了增加学生对疫情和肺炎的预防知识的了解,某学校利用网络开展了相关知识的宣传教育活动,为了解这次的宣传效果,学校从全校3600名学生中随机抽取200名学生进行知识测试(满分100分,得分均为整数),并根据这200人的测试成绩,制订如下统计图表:

(1) ,成绩最好的等级A所占的百分比;

(2)张亮在这次测试中成绩为85分,你认为85分一定是这200名学生知识测试成绩的中位数吗?请简要说明理由;

(3)如果80分以上(包括80)为优秀,请估计全校3600名学生中成绩优秀的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是反比例函数的图象,点分别在图象的两支上,以为对角线作矩形轴.

1)当线段过原点时,分别写出的一个等量关系式;

2)当两点在直线上时,求矩形的周长;

3)当时,探究的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AC=BC=4,∠C=90°,点DBC上,且CD=3DB,将△ABC折叠,使点A与点D重合,EF为折痕,则tanBED的值是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,图1,图2分别是某款高压电塔的实物图和示意图电塔的底座AB与地面平齐,DF表示电塔顶端D到地面的距离,已知AF的长是2米,支架AC与地面夹角∠BAC86°,顶端支架DC10米,DC与水平线CE之间夹角∠DCE45°,求电塔的高度DF.(sin86°=0.998cos86°=0.070tan86°=14.3001.4,结果保留整数)

查看答案和解析>>

同步练习册答案