精英家教网 > 初中数学 > 题目详情

【题目】下列命题中正确的个数是(

①过三点可以确定一个圆

②直角三角形的两条直角边长分别是512,那么它的外接圆半径为6.5

③如果两个半径为2厘米和3厘米的圆相切,那么圆心距为5厘米

④三角形的重心到三角形三边的距离相等.

A.1B.2C.3D.4

【答案】A

【解析】

①根据圆的作法即可判断;

②先利用勾股定理求出斜边的长度,然后根据外接圆半径等于斜边的一半即可判断;

③根据圆与圆的位置关系即可得出答案;

④根据重心的概念即可得出答案.

①过不在同一条直线上的三点可以确定一个圆,故错误;

②∵直角三角形的两条直角边长分别是512

∴斜边为 ,

∴它的外接圆半径为,故正确;

③如果两个半径为2厘米和3厘米的圆相切,那么圆心距为5厘米或1厘米,故错误;

④三角形的内心到三角形三边的距离相等,故错误;

所以正确的只有1个,

故选:A

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某商场用36000元购进甲、乙两种商品,销售完后共获利6000元.其中甲种商品每件进价120元,售价138元;乙种商品每件进价100元,售价120元.

1)该商场购进甲、乙两种商品各多少件?

2)商场第二次以原进价购进甲、乙两种商品,购进乙种商品的件数不变,而购进甲种商品的件数是第一次的2倍,甲种商品按原售价出售,而乙种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于8160元,乙种商品最低售价为每件多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)如图①,在中,,则的值是_______

2)如图②,在正方形中,,点是平面上一动点,且,连接,在上方作正方形,求线段的最大值.

问题解决:(3)如图③,半径为6,在中,,点上,点内,且.当点在圆上运动时,求线段的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙OABC的外接圆,AB为直径, ODBC交⊙O于点D,交AC于点E,连接ADBDCD

1)求证:AD=CD

2)若AB=10cosABC=,求tanDBC的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知圆O是正六边形ABCDEF外接圆,直径BE=8,点GH分别在射线CDEF上(点G不与点CD重合),且∠GBH=60°,设CG=xEH=y

1)如图①,当直线BG经过弧CD的中点Q时,求∠CBG的度数;

2)如图②,当点G在边CD上时,试写出y关于x的函数关系式,并写出x的取值范围;

3)联结AHEG,如果△AFH与△DEG相似,求CG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“互联网+”时代,网上购物备受消费者青睐,某网店专售一款休闲裤,其成本为每条40元,当售价为每条80元时,每月可售价100条.为了吸引更多顾客,该网店采取降价措施.据市场调查反映:销售单价每降元,则每月可多销售5条.设每条裤子的售价为(为正整数),每月的销售量为条.

1)直接写出的函数关系式;

2)设该网店每月获得的利润为元,当销售单价为多少元时,每月获得的利润最大,最大利润是多少?

3)该网店店主热心公益事业,决定每月从利润中捐出200元资助贫困学生,为了保证捐款后每月利润不低于3800元,且让消费者得到最大的实惠,该如何确定休闲裤的销售单价?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(问题)用n2×1矩形,镶嵌一个n矩形,有多少种不同的镶嵌方案?(n矩形表示矩形的邻边是2n

(探究)不妨假设有an种不同的镶嵌方案.为探究an的变化规律,我们采取一般问题特殊化的策略,先从最简单情形入手,再逐次递进,最后猜想得出结论.

探究一:用12×1矩形,镶嵌一个2×1矩形,有多少种不同的镶嵌方案?

如图(1),显然只有1种镶嵌方案.所以,a11

探究二:用22×1矩形,镶嵌一个2×2矩形,有多少种不同的镶嵌方案?

如图(2),显然只有2种镶嵌方案.所以,a22

探究三:用32×1矩形,镶嵌一个2×3矩形,有多少种不同的镶嵌方案?

一类:在探究一每个镶嵌图的右侧再横着镶嵌22×1矩形,有1种镶嵌方案;

二类:在探究二每个镶嵌图的右侧再竖着镶嵌12×1矩形,有2种镶嵌方案;

如图(3).所以,a31+23

探究四:用42×1矩形,镶嵌一个2×4矩形,有多少种不同的镶嵌方案?

一类:在探究二每个镶嵌图的右侧再横着镶嵌22×1矩形,有   种镶嵌方案;

二类:在探究三每个镶嵌图的右侧再竖着镶嵌12×1矩形,有   种镶嵌方案;

所以,a4   

探究五:用52×1矩形,镶嵌一个2×5矩形,有多少种不同的镶嵌方案?

(仿照上述方法,写出探究过程,不用画图)

……

(结论)用n2×1矩形,镶嵌一个n矩形,有多少种不同的镶嵌方案?

(直接写出anan1an2的关系式,不写解答过程).

(应用)用102×1矩形,镶嵌一个2×10矩形,有   种不同的镶嵌方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小亮同学在学校组织的社会调查活动中负责了解他所居住的小区450户居民的生活用水情况,他从中随机调查了若干户居民的月均用水量(单位:t),并绘制了样本的频数分布表和频数分布直方图(如图)

月均用水量(单位:t)

频数

百分比

2x<3

2

4%

3x<4

12

24%

4x<5

a

b

5x<6

10

20%

6x<7

c

12%

7x<8

3

6%

8x<9

2

4%

(1)频数分布表中a= ,b= .(填百分比),c= ;补全频数分布直方图.

(2)如果家庭月均用水量大于或等于4t且小于7t为中等用水量家庭,请你通过样本估计总体中的中等用水量家庭大约有 户;

(3)从月均用水量在2x<3,8x<9这两个范围内的样本家庭中任意抽取2个,请用列表法或画树状图求抽取出的2个家庭来自不同范围的概率.

查看答案和解析>>

同步练习册答案