精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,直线l1y=x+6y轴交于点A,直线l2y=kx+by轴交于点B,与l1相交于C(33)AO=2BO

1)求直线l2y=kx+b的解析式;

2)求△ABC的面积.

【答案】1y=2x3;(2SABC

【解析】

(1)根据y轴上点的坐标特征可求A点坐标,再根据AO=2BO,可求B点坐标,根据待定系数法可求直线l2的解析式;
(2)利用三角形面积公式即可求得.

解:(1)∵直线l1y=x+6y轴交于点A

∴当x=0时,y=0+6=6

A(06)

AO=2BO

B(0,﹣3)

C(33)

代入直线l2y=kx+b中得

解得

故直线l2的解析式为y=2x3

2SABCAB|xC|(6+3)×3

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】我们把能被13整除的数称为“自觉数”,已知一个整数,把其个位数字去掉,再从余下的数中加上个位数的4倍如果和是13的倍数,则原数为“自觉数”,如果数字仍然太大不能直接观察出来就重复此过程.如41641+4×66565÷135,所以416是自觉数;又如252812528+4×12532253+4×226126+4×130,因为30不能被13整除,所以25281不是“自觉数”.

1)判断27365是否为自觉数   (填“是”或者“否”).

2)一个四位数n,规定Fn)=|a+db×c|,如:F2019)=|2+90×1|11,若四位数n能被65整除,且该四位数的千位数字和十位数字相同,其中1a4.求出所有满足条件的四位数n中,Fn)的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有七张正面分别标有数字﹣1、﹣2、0、1、2、3、4的卡片,除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为m,则使关于x的方程 + =2的解为正数,且不等式组 无解的概率是________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,ABx轴上,以AB为直径的半圆⊙O‘y轴正半轴交于点C,连接BCACCD是半圆⊙O’的切线,AD⊥CD于点D

1)求证:∠CAD =∠CAB3分)

2)已知抛物线ABC三点,AB=10tan∠CAD=

求抛物线的解析式(3分)

判断抛物线的顶点E是否在直线CD上,并说明理由(3分);

在抛物线上是否存在一点P,使四边形PBCA是直角梯形.若存在,直接写出点P的坐标(不写求解过程);若不存在,请说明理由(3分).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠B=90°,AB=12,BC=24,动点P从点A开始沿边AB向终点B以每秒2个单位长度的速度移动,动点Q从点B开始沿边BC以每秒4个单位长度的速度向终点C移动,如果点P、Q分别从点A、B同时出发,那么△PBQ的面积S随出发时间t(s)如何变化?写出函数关系式及t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,CDAB,BEAC,垂足分别为点D,E,BECD相交于点O.1=2,则图中全等三角形共有( )

A. 4B. 3C. 2D. 5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,延长的各边,使得,顺次连接,得到为等边三角形.

求证:(1

2为等边三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(本题6分)甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.

(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;

(2)若两人抽取的数字和为2的倍数,则甲获胜;若抽取的数字和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,A(3,3)C(0,2),点B(b0)x轴正半轴上一动点,点D是点A关于x轴的对称点.

(1)写出点D的坐标并用b表示四边形AODB的面积S

(2)连结CDx轴于P,试求APCP的和;

(3)在点B从左向右移动过程中,点B处于哪些位置时OBD是特殊的三角形?写出点B的坐标并分别说明理由.

查看答案和解析>>

同步练习册答案