精英家教网 > 初中数学 > 题目详情

【题目】如图,已知二次函数的图象与轴交于两点(点在点的左侧),与轴交于点,且,顶点为

1)求二次函数的解析式;

2)点为线段上的一个动点,过点轴的垂线,垂足为,若,四边形的面积为,求关于的函数解析式,并写出的取值范围;

3)探索:线段上是否存在点,使为等腰三角形?如果存在,求出点的坐标;如果不存在,请说呀理由.

【答案】1;(2;(3)存在, .

【解析】

1)可根据OBOC的长得出BC两点的坐标,然后用待定系数法即可求出抛物线的解析式.
2)可将四边形ACPQ分成直角三角形AOC和直角梯形CQPC两部分来求解.先根据抛物线的解析式求出A点的坐标,即可得出三角形AOC直角边OA的长,据此可根据上面得出的四边形的面积计算方法求出Sm的函数关系式.
3)先根据抛物线的解析式求出M的坐标,进而可得出直线BM的解析式,据此可设出N点的坐标,然后用坐标系中两点间的距离公式分别表示出CMMNCN的长,然后分三种情况进行讨论:①CM=MN;②CM=CN;③MN=CN.根据上述三种情况即可得出符合条件的N点的坐标.

解:(1)∵,∴.∴

解得,∴二次函数的解析式为

2

设直线的解析式为,则有解得

∴直线的解析式为

轴,,∴点的坐标为

3)线段上存在点 使为等腰三角形。设点坐标为则:

①当,解得(舍去)

此时

②当时,

解得(舍去),此时

③当时,

解得,此时

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,由于各人的习惯不同,双手交叉时左手大拇指或右手大拇指在上是一个随机事件,曾老师对他任教的学生做了一个调查,统计结果如下表所示:

2011

2012

2013

2014

2015

参与实验的人数

106

110

98

104

112

右手大拇指在上的人数

54

57

49

51

56

频率

0.509

0.518

0.500

0.490

0.500

根据表格中的数据,你认为在这个随机事件中,右手大拇指在上的概率可以估计为(  )

A. 0.6 B. 0.5 C. 0.45 D. 0.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠C90°,点OAC上,以OA为半径的⊙OAB于点DBD的垂直平分线交BC于点E,交BD于点F,连接DE

1)判断直线DE与⊙O的位置关系,并说明理由;

2)若∠B30°AC6OA2,直接写出阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一次函数的图象与反比例函数的图象交于两点,点的坐标为

1)求一次函数的解析式

2)已知双曲线在第一象限上有一点到轴的距离为3,求的面积

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤.通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤.为保证每天至少售出260斤,张阿姨决定降价销售.

销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线轴于两点,与轴交于点.连接.

1)求抛物线的解析式和点的坐标;

2若点为第四象限内抛物线上一动点,点的横坐标为的面积为,求关于的函数关系式,并求出的最大值;

3)抛物线的对称轴上是否存在点,使为等腰三角形?若存在,请直接写出所有点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在 11×16 的网格图中,△ABC 三个顶点坐标分别为 A(﹣4,0),B(﹣1,1),C(﹣2,3).

(1)请画出△ABC 沿x 轴正方向平移4个单位长度所得到的△A1B1C1

(2)以原点O为位似中心,将(1)中的△A1B1C1 放大为原来的3倍得到△A2B2C2,请在第一象限内画出△A2B2C2,并直接写出△A2B2C2 三个顶点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线yax2+bx+ca≠0)的顶点坐标为(2,﹣1),图象与y轴交于点C03),与x轴交于AB两点.

1)求抛物线的解析式;

2)设抛物线对称轴与直线BC交于点D,连接ACAD,点E为直线BC上的任意一点,过点Ex轴的垂线与抛物线交于点F,问是否存在点E使DEF为直角三角形?若存在,求出点E坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程x2+2m﹣1x+m2=0有两个实数根x1x2

1)求实数m的取值范围;

2)当x12﹣x22=0时,求m的值.

查看答案和解析>>

同步练习册答案