【题目】已知二次函数的图象经过三点(1,0),(-6,0)(0,-3).
(1)求该二次函数的解析式.
(2)若反比例函数的图象与二次函数的图象在第一象限内交于点A(),落在两个相邻的正整数之间,请求出这两个相邻的正整数.
(3)若反比例函数的图象与二次函数的图象在第一象限内的交点为B,点B的横坐标为m,且满足3<m<4,求实数k的取值范围.
【答案】(1);(2)1与2;(3)
【解析】
(1)已知了抛物线与x轴的交点,可用交点式来设二次函数的解析式.然后将另一点的坐标代入即可求出函数的解析式;
(2)可根据(1)的抛物线的解析式和反比例函数的解析式来联立方程组,求出的方程组的解就是两函数的交点坐标,然后找出第一象限内交点的坐标,即可得出符合条件的的值,进而可写出所求的两个正整数即可;
(3)点B的横坐标为m,满足3<m<4,可通过m=3,m=4两个点上抛物线与反比例函数的大小关系即可求出k的取值范围.
解:(1)∵二次函数图像经过(1,0),(-6,0),(0,-3),
∴设二次函数解析式为,
将点(0,3)代入解析式得,
∴;
∴,
即二次函数解析式为;
(2)如图,根据二次函数与反比例函数在第一象限的图像可知,
当时,有;
当时,有,
故两函数交点的横坐标落在1和2之间,从而得出这两个相邻的正整数为1与2.
(3)根据函数图像性质可知:
当时,对,随着的增大而增大,
对,随着的增大而减小,
∵点B为二次函数与反比例函数交点,
∴当时,,
即,解得,
同理,当时,,
即,解得,
∴的取值范围为;
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A的坐标是(10,0),点C、D在以OA为直径的半圆上,点B在OA上,且四边形OCDB是菱形,则点C的坐标为_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,直线PQ的同侧有两点M,N,点T在直线PQ上,若∠MTP=∠NTQ,则称点M,N为关于直线PQ的衍射点.如图2,BD是矩形ABCD的对角线,E是边BC延长线上的一点,且CE=BC,连接AE交CD于点F,交BD于点P,连接BF,CP.
(1)求证:点A,B是关于直线CD的衍射点.
(2)若点C,F是关于直线BD的衍射点,CP=2PF=2,求AB的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某政府工作报告中强调,2019年着重推进乡村振兴战略,做优做响湘莲等特色农产品品牌.小亮调查了一家湘潭特产店两种湘莲礼盒一个月的销售情况,A种湘莲礼盒进价72元/盒,售价120元/盒,B种湘莲礼盒进价40元/盒,售价80元/盒,这两种湘莲礼盒这个月平均每天的销售总额为2800元,平均每天的总利润为1280元.
(1)求该店平均每天销售这两种湘莲礼盒各多少盒?
(2)小亮调査发现,种湘莲礼盒售价每降3元可多卖1盒.若种湘莲礼盒的售价和销量不变,当种湘莲礼盒降价多少元/盒时,这两种湘莲礼盒平均每天的总利润最大,最大是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数的图像与轴交于、两点,与轴交于点,.点在函数图像上,轴,且,直线是抛物线的对称轴,是抛物线的顶点.
(1)求、的值;
(2)如图①,连接,线段上的点关于直线的对称点恰好在线段上,求点的坐标;
(3)如图②,动点在线段上,过点作轴的垂线分别与交于点,与抛物线交于点.试问:抛物线上是否存在点,使得与的面积相等,且线段的长度最小?如果存在,求出点的坐标;如果不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D是AB的中点,以CD为直径作⊙O,⊙O分别与AC,BC交于点E,F,过点F作⊙O的切线FG,交AB于点G,则FG的长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(6分)如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).
(1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标;
(2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2;
(3)求出(2)中C点旋转到C2点所经过的路径长(记过保留根号和π).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:抛物线.
(1)求证:抛物线与轴有两个交点.
(2)设抛物线与轴的两个交点的横坐标分别为,(其中).若是关于的函数、且,求这个函数的表达式;
(3)若,将抛物线向上平移一个单位后与轴交于点、.平移后如图所示,过作直线,分别交的正半轴于点和抛物线于点,且.是线段上一动点,求的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com