【题目】已知二次函数(是常数).
(1)当时,该函数的图象与直线有几个公共点?说明理由;
(2)若该函数的图象与轴只有一个公共点,求的值.
【答案】(1) 有1个公共点;(2)0或-.
【解析】
(1)转化为求方程组的解,即可判断;
(2)分两种情况讨论:①当函数为一次函数时,与x轴有一个交点;
②当函数为二次函数时,利用判别式△=0,转化为方程即可解决问题;
(1)m=-1时, ,解得 ,
∴该函数的图象与直线y=2有1个公共点.
(2)①当m=0时,函数y=-4x+1的图象与x轴只有一个交点;
②当m≠0时,若函数y=mx2-6x-7的图象与x轴只有一个交点,则方程mx2-6x-7=0有两个相等的实数根,
所以△=(-6)2-4m(-7)=0,m=- .
综上,若函数y=mx2-4x+1的图象与x轴只有一个交点,则m的值为0或-.
科目:初中数学 来源: 题型:
【题目】如图,若干个全等的正五边形排成环状,图中所示的是前3个正五边形,要完成这一圆环还需正五边形的个数为( )
A. 10 B. 9 C. 8 D. 7
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,∠AOB=90°,∠OAB=30°,反比例函数y1=的图象经过点A,反比例函数y2=﹣的图象经过点B,则m的值是( )
A.m=3B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中的点,将它的纵坐标与横坐标的比称为点的“湘一比”,记为,如点,则.
(1)若在直线上,求点的“湘一比”及直线与轴夹角的正切值;
(2)已知点的“湘一比”为,且在上,的半径为,若点在上,求的“湘一比”的取值范围;
(3)设、为正整数,且,对一切实数,如果直线与二次函数交于、,且,求点的“湘一比”的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“校园安全”受到全社会的广泛关注,东营市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:
(1)接受问卷调查的学生共有_______人,扇形统计图中“基本了解”部分所对应扇形的圆心角为_______°;
(2)请补全条形统计图;
(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数;
(4)若从对校园安全知识达到“了解”程度的3个女生和2个男生中随机抽取2人参加校园安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,小华在晚上由路灯A走向路灯B.当他走到点P时,发现他身后影子的顶部刚好接触到路灯A的底部;当他向前再步行12m到达点Q时,发现他身前影子的顶部刚好接触到路灯B的底部.已知小华的身高是1.6m,两个路灯的高度都是9.6m,且AP=QB.
(1)求两个路灯之间的距离;
(2)当小华走到路灯B的底部时,他在路灯A下的影长是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,有一个等腰直角三角形AOB,∠OAB= 90° ,直角边AO在x轴上,且AO= 1.将 Rt△AOB绕原点O顺时针旋转90° 得到等腰直角三角形A1OB1,且A1O= 2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰直角三角形A2OB2,且A2O=2A1O......依此规律,得到等腰直角三角形A2018OB2018 ,则点A2018的坐标为__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】每个小方格都是边长为1个单位长度的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上.
(1)把△ABC向上平移5个单位后得到对应的△A1B1C1,画出△A1B1C1;
(2)画出与△ABC关于原点O对称的△A2B2C2;
(3)△A1B1C1与△A2B2C2关于某个点对称,则这个点的坐标为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满.当每个房间 每天的房价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每天支出20元的各种费用.根据规定,每个房间每天的房价不得高于340元.设每个房间的房价增加x元(x为10的正整数倍).
(1)设一天订住的房间数为y,直接写出y与x的函数关系式及自变量x的取值范围;
(2)设宾馆一天的利润为w元,求w与x的函数关系式;
(3)一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com