精英家教网 > 初中数学 > 题目详情
3.化简:(1-x)2+2x=x2+1.

分析 原式第一项利用完全平方公式展开,去括号合并即可得到结果.

解答 解:原式=x2-2x+1+2x
=x2+1.
故答案为:x2+1.

点评 此题考查了整式的混合运算,涉及的知识有:完全平方公式,去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

13.在江岸区某初中,参加跳高的16名运动员的成绩如表:
成绩(m)1.501.601.651.701.751.80
人数224332
那么这些运动员跳高成绩的众数是(  )
A.4B.1.75C.1.70D.1.65

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.化简:$\frac{1}{2}$x-2(x-$\frac{1}{3}$y2)+(-$\frac{3}{2}$x+$\frac{1}{3}$y2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.在Rt△ABC中,∠ACB=90°,AC=2,BC=4.点D是线段BC上的一个动点.点D与点B、C不重合,过点D作DE⊥BC交AB于点E,将△ABC沿着直线DE翻折,使点B落在直线BC上的F点.
(1)设∠BAC=α(如图①),求∠AEF的大小;(用含α的代数式表示)
(2)当点F与点C重合时(如图②),求线段DE的长度;
(3)设BD=x,△EDF与△ABC重叠部分的面积为S,试求出S与x之间函数关系式,并写出自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,二次函数y=x2+bx+c的图象经过A(1,0),B(-3,0)两点,与y轴交于点C,过点A的直线与y轴交干点D,与抛物线交于点M,且tan∠BAM=1.
(1)求该二次函数的解析式;
(2)若点Q在抛物线上,且S△QOC=4S△AOC,求点Q的坐标;
(3)P为抛物线上一动点,E为直线AD上一动点,是否存在点P,使以点A、P、E为顶点的三角形为等腰直角三角形?若存在,请求出所有点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.写一个你喜欢的实数m的值-4(答案不唯一),使得事件“对于二次函数y=$\frac{1}{2}$x2-(m-1)x+3,当x<-3时,y随x的增大而减小”成为随机事件.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.某海域有A,B两个港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船从A港口出发,沿东北方向行驶一段距离后,到达位于B港口南偏东75°方向的C处,求该船与B港口之间的距离即CB的长(结果保留根号).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.如图,已知直线AB与CD交于点O,ON平分∠DOB,若∠BOC=110°,则∠AON的度数为145度.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图1,已知B点坐标是(6$\sqrt{3}$,6),BA⊥x轴于A,BC⊥y轴于C,D在线段OA上,E在y轴的正半轴上,DE⊥BD,M是DE中点,且M在OB上.
(1)点M的坐标是(2$\sqrt{3}$,2),DE=8;
(2)小明在研究动点问题时发现,如果有两点分别在两条互相垂直的直线上做匀速运动,连接这两点所得线段的中点将在同一条直线上运动,利用这一事实解答下列问题,如图2,如果一动点F从点B出发以每秒1个单位长度的速度向点A运动,同时有一点G从点D出发以每秒$\sqrt{3}$个单位长度的速度向点O运动,点H从点E开始沿y轴正方向自由滑动,并始终保持GH=DE,P为FG的中点,Q为GH的中点,F与G两个点分别运动到各自终点时停止运动,分别求出在运动过程中点P、Q运动的路线长.
(3)连接PQ,求当运动多少秒时,PQ最小,最小值是多少?

查看答案和解析>>

同步练习册答案