精英家教网 > 初中数学 > 题目详情

【题目】如图,在锐角三角形ABC中,BC=6,∠ABC=45°,BD平分∠ABC,M、N分别是BD、BC上的动点,则CM+MN的最小值是_____

【答案】6

【解析】

过点CCEAB于点E,交BD于点M,过点MMNBCN,则CE即为CM+MN的最小值,再根据BC=6ABC=45°,BD平分∠ABC可知BCE是等腰直角三角形,由锐角三角函数的定义即可求出CE的长.

过点CCEAB于点E,交BD于点M,过点MMNBCN,则CE即为CM+MN的最小值,

BC=6ABC=45°,BD平分∠ABC

∴△BCE是等腰直角三角形,

CEBCcos45°=6×=6.

CM+MN的最小值为6.

故答案是:6.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知AB=AD,那么添加下列一个条件后,仍无法判定ABC≌△ADC的是(  )

A. CB=CD B. BAC=DAC C. BCA=DCA D. B=D=90°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,顶点为D的抛物线y=﹣x2+x+4y轴交于点A,与x轴交于两点B、C(点B在点C的左边),点A与点E关于抛物线的对称轴对称,点B、E在直线y=kx+b(k,b为常数)上.

(1)k,b的值;

(2)P为直线AE上方抛物线上的任意一点,过点PAE的垂线交AE于点F,点Gy轴上任意一点,当△PBE的面积最大时,求PF+FG+OG的最小值;

(3)(2)中,当PF+FG+OG取得最小值时,将△AFG绕点A按顺时方向旋转30°后得到△AF1G1,过点G1AE的垂线与AE交于点M.点D向上平移个单位长度后能与点N重合,点Q为直线DN上任意一点,在平面直角坐标系中是否存在一点S,使以S、Q、M、N为顶点且MN为边的四边形为菱形?若存在,直接写出点S的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点O在边长为6的正方形ABCD的对角线AC上,以O为圆心OA为半径的⊙OAB于点E.

(1)⊙O过点E的切线与BC交于点F,当0<OA<6时,求∠BFE的度数;

(2)设⊙OAB的延长线交于点M,⊙O过点M的切线交BC的延长线于点N,当6<OA<12时,利用备用图作出图形,求∠BNM的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】音乐喷泉(图1)可以使喷水造型随音乐的节奏起伏变化而变化.某种音乐喷泉形状如抛物线,设其出水口为原点,出水口离岸边18m,音乐变化时,抛物线的顶点在直线y=kx上变动,从而产生一组不同的抛物线(图2),这组抛物线的统一形式为y=ax2+bx.

(1)若已知k=1,且喷出的抛物线水线最大高度达3m,求此时a、b的值;

(2)若k=1,喷出的水恰好达到岸边,则此时喷出的抛物线水线最大高度是多少米?

(3)若k=3,a=﹣,则喷出的抛物线水线能否达到岸边?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:在平面直角坐标系中,点Q坐标为(x,y),若过点Q的直线lx轴夹角为45°时,则称直线l为点Q的“湘依直线”.

(1)已知点A的坐标为(6,0),求点A的“湘依直线”表达式;

(2)已知点D的坐标为(0,﹣4),过点D的“湘依直线”图象经过第二、三、四象限,且与x轴交于C点,动点P在反比例函数y=(x>0)上,求△PCD面积的最小值及此时点P的坐标;

(3)已知点M的坐标为(0,2),经过点M且在第一、二、三象限的“湘依直线”与抛物线y=x2+(m﹣2)x+m+2相交与A(x1,y1),B(x2,y2)两点,若0≤x1≤2,0≤x2≤2,求m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ACB=90°,AO△ABC的角平分线.以O为圆心,OC为半径作⊙O.

(1)求证:AB⊙O的切线.

2)已知AOO于点E,延长AOO于点DtanD=,求的值.

(3)在(2)的条件下,设⊙O的半径为3,求AB的长.

【答案】(1)证明见解析(2) (3)

【解析】试题分析:(1)过OOF⊥ABF,由角平分线上的点到角两边的距离相等即可得证;(2)连接CE,证明△ACE∽△ADC可得= tanD;(3)先由勾股定理求得AE的长,再证明△B0F∽△BAC,得,设BO="y" BF=z,列二元一次方程组即可解决问题.

试题解析:(1)证明:作OF⊥ABF

∵AO∠BAC的角平分线,∠ACB=90

∴OC=OF

∴AB⊙O的切线

2)连接CE

∵AO∠BAC的角平分线,

∴∠CAE=∠CAD

∵∠ACE所对的弧与∠CDE所对的弧是同弧

∴∠ACE=∠CDE

∴△ACE∽△ADC

= tanD

3)先在△ACO中,设AE=x,

由勾股定理得

(x3)="(2x)" 3 ,解得x="2,"

∵∠BFO=90°=∠ACO

易证Rt△B0F∽Rt△BAC

BO=y BF=z

4z=93y4y=123z

解得z=y=

∴AB=4=

考点:圆的综合题.

型】解答
束】
22

【题目】已知:二次函数的图象与x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C在y轴的正半轴上,线段O、OC的长(OB<OC)是方程x2-10x+16=0的两个根,且A点坐标为(-6,0).

(1)求此二次函数的表达式;

(2)若点E是线段AB上的一个动点(与点A、点B不重合),过点E作EF∥AC交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式,并写出自变量m的取值范围;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等腰RtABC中,∠ACB90°,ACBCD是线段BC上一动点(不与点BC重合),连接AD,延长BC至点E,使得CECD,过点EEFAD于点F,再延长EFAB于点M

1)若DBC的中点,AB4,求AD的长;

2)求证:BMCD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD的边AD与x轴平行,A、B两点的横坐标分别为1和3,反比例函数y=的图象经过A、B两点,则菱形ABCD的面积是_____

查看答案和解析>>

同步练习册答案