精英家教网 > 初中数学 > 题目详情

【题目】(知识生成)我们已经知道,多项式的乘法可以利用图形的面积进行解释.例如利用图1的面积可以得到,基于此,请解答下列问题:

1)请你写出图2所表示的一个等式:________

2)小明同学用图3张边长为的正方形,张边长为的正方形,张宽、长分别为的长方形纸片拼出一个面积为长方形,则________

(知识迁移)(3)事实上,通过计算几何图形的体积也可以表示一些等式,图4表示的是一个边长为的正方体挖去一个小长方体后重新拼成一个新长方体,请你根据图4中图形的变化关系,写出一个代数恒等式:________

【答案】1)(a+b+c2=a2+b2+c2+2ab+2ac+2bc;(29;(3x3-x=x(x+1)(x-1

【解析】

1)依据正方形的面积=a+b+c2;正方形的面积=a2+b2+c2+2ab+2ac+2bc,可得等式;

2)依据所拼图形的面积为:xa2+yb2+zab,而(2a+b)(a+2b=2a2+4ab+ab+2b2=2a2+5b2+2ab,即可得到xyz的值.

3)根据原几何体的体积=新几何体的体积,列式可得结论.

解:(1)由图2得:正方形的面积=a+b+c2

正方形的面积=a2+b2+c2+2ab+2ac+2bc

∴(a+b+c2=a2+b2+c2+2ab+2ac+2bc

故答案为:(a+b+c2=a2+b2+c2+2ab+2ac+2bc

2)由题意得:(2a+b)(a+2b=xa2+yb2+zab
2a2+5ab+2b2=xa2+yb2+zab

故答案为:9.

3)∵原几何体的体积=x3-1×1x=x3-x,新几何体的体积=x(x+1)(x-1),

x3-x=x(x+1)(x-1).

故答案为:x3-x=x(x+1)(x-1).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图:在ABC中,BECF分别是ACAB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接ADAG

1)求证:AD=AG

2ADAG的位置关系如何,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1是一组有规律的图案,第①个图集中有4个三角形,第②个图案中有7个三角形,第③个图案中有10个三角形,……依此规律,第⑦个图案中有______个三角形,第n个图案中有______个三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个不透明的口袋里装有分别标有汉字的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.

(1)若从中任取一个球,球上的汉字刚好是的概率为多少?

(2)小颖从中任取一球,记下汉字后放回袋中,然后再从中任取一球,求小颖取出的两个球上汉字恰能组成幸福聊城的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的切线互相垂直,垂足为D.

(1)求证:AC平分∠DAB;

(2)过点O作线段AC的垂线OE,垂足为E(要求:尺规作图,保留作图痕迹,不写作法);

3)若CD=4AC=4,求垂线段OE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图在ABC中,BO,CO分别平分∠ABC,ACB,交于O,CE为外角∠ACD的平分线,BO的延长线交CE于点E,记∠BAC=1,BEC=2,则以下结论①∠1=22,②∠BOC=32,③∠BOC=90°+1,④∠BOC=90°+2正确的是(  )

A. ①②③ B. ①③④ C. ①④ D. ①②④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】出租车司机小张某天上午营运全是在东西走向的政府大道上进行的,如果规定向东为正,向西为负,他这天上午的行程是(单位千米)+15,-3,+16,-11,+10,-12,+4,-15,+16,-18

(1)将最后一名乘客送达目的地时,小张距上午出发点的距离是多少千米?在出发点的什么方向?

(2)若汽车耗油量为06升/千米,出车时,邮箱有油722升,若小张将最后一名乘客送达目的地,再返回出发地,问小张今天上午是否需要加油?若要加油至少需要加多少才能返回出发地?若不用加油,请说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某软件科技公司20人负责研发与维护游戏、网购、视频和送餐共4款软件.投入市场后,游戏软件的利润占这4款软件总利润的40%.如图是这4款软件研发与维护人数的扇形统计图和利润的条形统计图.

根据以上信息,网答下列问题

(1)直接写出图中a,m的值;

(2)分别求网购与视频软件的人均利润;

(3)在总人数和各款软件人均利润都保持不变的情况下,能否只调整网购与视频软件的研发与维护人数,使总利润增加60万元?如果能,写出调整方案;如果不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系xOy中,已知ABC,ABC=90°,顶点A在第一象限,B,Cx轴的正半轴上(CB的右侧),BC=2,AB=2ADCABC关于AC所在的直线对称.

(1)当OB=2时,求点D的坐标;

(2)若点A和点D在同一个反比例函数的图象上,求OB的长;

(3)如图2,将第(2)题中的四边形ABCD向右平移,记平移后的四边形为A1B1C1D1,过点D1的反比例函数y=(k≠0)的图象与BA的延长线交于点P.问:在平移过程中,是否存在这样的k,使得以点P,A1,D为顶点的三角形是直角三角形?若存在,请直接写出所有符合题意的k的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案