精英家教网 > 初中数学 > 题目详情
7.若10200000=1.02×10n,则n=7.

分析 科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.

解答 解:∵10200000=1.02×10n
∴则n=7.
故答案为:7.

点评 此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

10.如图,已知一次函数y=2x+a与y=-x+b的图象都经过点A(-2,0)且与y轴分别交于B,C两点.
(1)分别求出这两个一次函数的解析式;
(2)求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.计算:$\root{3}{27}$-4$\sqrt{\frac{1}{16}}$+$\sqrt{25}$=9.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.|$\frac{1}{2}$x-2|=|-3|.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.计算
(1)2$\sqrt{12}$-6$\sqrt{\frac{1}{3}}$+4$\sqrt{48}$
(2)(2$\sqrt{48}$-3$\sqrt{27}$)÷$\sqrt{6}$
(3)$\frac{2}{3}\sqrt{9x}$+6$\sqrt{\frac{x}{4}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.关于x的方程:x+$\frac{1}{x}$=c+$\frac{1}{c}$的解为x1=c,x2=$\frac{1}{c}$;
x-$\frac{1}{x}$=c-$\frac{1}{c}$(即x+$\frac{-1}{x}$=c+$\frac{-1}{c}$的解为x1=c,x2=-$\frac{1}{c}$;
x+$\frac{2}{x}$=c+$\frac{2}{c}$的解为x1=c,x2=$\frac{2}{c}$;x+$\frac{3}{x}$=c+$\frac{3}{c}$的解为x1=c,x2=$\frac{3}{c}$;…
(1)请观察上述方程与解的特征,比较关于x的方程x+$\frac{m}{c}$=c+$\frac{m}{c}$(m≠0)与它们的关系,猜想它的解是什么,并利用“方程的解”的概念进行验证;
(2)由上述的观察、比较、猜想、验证,可以得出结论:如果方程的左边是未知数与其倒数的和,方程右边的形式与左边完全相同,只有把其中的未知数换成某个常数,那么这样的方程可以直接得解.请用这个结论解关于x的方程:x+$\frac{2}{x-1}$=c+$\frac{2}{c-1}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.若x的立方根是-4,则x=-64.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.表示三种不同的物体,现放在天平上比较两次,情况如图所示,那么,这三种物体质量的大小关系应为a=b<c.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2).延长CB交x轴于点A1,作正方形A1 B1 C1 C;延长C1B1交x轴于点A2,作正方形A2B2C2C1…按这样的规律进行下去,若正方形ABCD算第一个正方形,则第2010个正方形的面积为(  )
A.$5{({\frac{3}{2}})^{2009}}$B.$5{({\frac{9}{4}})^{2010}}$C.$5{({\frac{9}{4}})^{2008}}$D.$5{({\frac{9}{4}})^{2009}}$

查看答案和解析>>

同步练习册答案