精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系中,已知抛物线的顶点M的坐标为(﹣1,﹣4),且与x轴交于点A,点B(点A在点B的左边),与y轴交于点C.

(1)填空:b= ,c= ,直线AC的解析式为

(2)直线x=t与x轴相交于点H.

①当t=﹣3时得到直线AN(如图1),点D为直线AC下方抛物线上一点,若∠COD=∠MAN,求出此时点D的坐标;

②当﹣3<t<﹣1时(如图2),直线x=t与线段AC,AM和抛物线分别相交于点E,F,P.试证明线段HE,EF,FP总能组成等腰三角形;如果此等腰三角形底角的余弦值为,求此时t的值.

【答案】(1)2,﹣3,y=﹣x﹣3;(2)D(t=

【解析】

试题分析:(1)根据顶点坐标列出关于b、c的方程组求解可得,由抛物线解析式求得A、C坐标,利用待定系数法可得直线AC解析式;

(2)①设点D的坐标为(m,),由∠COD=∠MAN得tan∠COD=tan∠MAN,列出关于m的方程求解可得;②求出直线AM的解析式,进而可用含t的式子表示出HE、EF、FP的长度,根据等腰三角形定义即可判定;由等腰三角形底角的余弦值为可得=,列方程可求得t的值.

试题解析:(1)∵抛物线的顶点M的坐标为(﹣1,﹣4),∴,解得:,∴抛物线解析式为:,令y=0,得:,解得:,∴A(﹣3,0),B(1,0),令x=0,得y=﹣3,∴C(0,﹣3),设直线AC的解析式为:y=kx+b,将A(﹣3,0),C(0,﹣3)代入,得:,解得:,∴直线AC的解析式为:y=﹣x﹣3;故答案为:2,﹣3,y=﹣x﹣3.

(2)①设点D的坐标为(m,),∵∠COD=∠MAN,∴tan∠COD=tan∠MAN,∴,解得:m=,∵﹣3<m<0,∴m=,故点D的坐标为();

②设直线AM的解析式为y=mx+n,将点A(﹣3,0)、M(﹣1,﹣4)代入,得:,解得:,∴直线AM的解析式为:y=﹣2x﹣6,∵当x=t时,HE=﹣(﹣t﹣3)=t+3,HF=﹣(﹣2t﹣6)=2t+6,HP=,∴HE=EF=HF﹣HE=t+3,FP=,∵HE+EF﹣FP==>0,∴HE+EF>FP,又HE+FP>EF,EF+FP>HE,∴当﹣3<t<﹣1时,线段HE,EF,FP总能组成等腰三角形;

由题意得:=,即=,整理得:,解得: ,∵﹣3<t<﹣1,∴t=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则下列判断:

①当AP=BP时,AB′∥CP;

②当AP=BP时,∠B′PC=2∠B′AC

③当CP⊥AB时,AP=

④B′A长度的最小值是1.

其中正确的判断是 (填入正确结论的序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知∠MAN=120°,AC平分∠MAN,点B、D分别在AN、AM上.
(1)如图1,若∠ABC=∠ADC=90°,请你探索线段AD、AB、AC之间的数量关系,并证明之;
(2)如图2,若∠ABC+∠ADC=180°,则(1)中的结论是否仍然成立?若成立,给出证明;若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】从2开始,连续的偶数相加,它们和的情况如下表:

(1)如果n =8时,那么S的值为
(2)根据表中的规律猜想:用n的代数式表示S的公式为S=2+4+6+8+…+2n =
(3)根据上题的规律计算102+104+106+…+2006的值(要有计算过程).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知圆柱的侧面积是20π cm2 , 高为5cm,则圆柱的底面半径为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】福建省教育厅决定在全省中小学开展“关注校车、关爱学生”为主题的交通安全教育宣传周活动,某中学为了了解本校学生的上学方式,在全校范围内随机抽查了部分学生,将收集的数据绘制成如下两幅不完整的统计图(如图所示),请根据图中提供的信息,解答下列问题.

(1)m=%,这次共抽取名学生进行调查;并补全条形图
(2)在这次抽样调查中,采用哪种上学方式的人数最多?
(3)如果该校共有6000名学生,请你估计该校骑自行车上学的学生有多少名?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是平行四边形,对角线AC,BD相交于点O,且∠1=∠2.求证:四边形ABCD是矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】据电力部门统计,每天8:00至21:00是用电的高峰期,简称“峰时”,21:00至次日8:00是用电的低谷时期,简称“谷时”,为了缓解供电需求紧张矛盾,某市电力部门于本月初统一换装“峰谷分时”电表,对用电实行“峰谷分时电价”新政策,具体见下表:

(1)小张家上月“峰时”用电50度,“谷时”用电20度,若上月初换表,则相对于换表前小张家的电费是增多了还是减少了?增多或减少了多少元?请说明理由.
(2)小张家这个月用电95度,经测算比换表前使用95度电节省了5.9元,问小张家这个月使用“峰时电”和“谷时电”分别是多少度?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列各数: ,3.1415, ,0, ,1.3030030003……(每两个3之间多一个0)中,
(1)无理数为:
(2)整数为:
(3)按从小到大排列,并用“<”连接.

查看答案和解析>>

同步练习册答案