【题目】某商场销售一种商品,进价为每件15元,规定每件商品售价不低于进价,且每天销售量不低于90件经调查发现,每天的销售量y(件)与每个商品的售价x(元)满足一次函数关系,其部分数据如下表所示:
每个商品的售价x(元) | … | 30 | 40 | 50 | … |
每天的销售量y(件) | … | 100 | 80 | 60 | … |
(1)填空:y与x之间的函数关系式是______.
(2)设商场每天获得的总利润为w(元),求w与x之间的函数关系式;
(3)不考虑其他因素,当商品的售价为多少元时,商场每天获得的总利润最大,最大利润是多少?
【答案】(1)y=﹣2x+160;(2)w=﹣2x2+190x﹣2400;(3)当商品的售价为35元时,商场每天获得的总利润最大,最大利润是1800元.
【解析】
(1)根据表格所给数据即可求得一次函数解析式;(2)根据总利润等于销售量乘以单件利润即可求解;(3)根据二次函数的性质即可求解.
(1)设每天的销售量y(件)与每个商品的售价x(元)满足的一次函数关系为:
y=kx+b,
把(30,100)、(40,80)代入得:
解得:,
∴y与x之间的函数关系式是y=﹣2x+160.
故答案为:y=﹣20x+160
(2)∵每天销售量不低于90件,
∴-20x+160≤90,
解得:x≤35,
∵售价不低于进价,
∴x≥15,
∴15≤x≤35,
w=(x﹣15)(﹣2x+160)
=﹣2x2+190x﹣2400(15≤x≤35).
答:w与x之间的函数关系式为w=﹣2x2+190x﹣2400(15≤x≤35).
(3)w=﹣2x2+190x﹣2400
=﹣2(x﹣47.5)2+2112.5
∵15≤x≤35,﹣2<0,
∴图象在对称轴左侧,w随x的增大而增大,
∴当x=35时,w最大为1800.
答:当商品的售价为35元时,商场每天获得的总利润最大,最大利润是1800元.
科目:初中数学 来源: 题型:
【题目】已知:如图,ABCD中,E、F分别是边AB、CD的中点.
(1)求证:四边形EBFD是平行四边形;
(2)若AD=AE=2,∠A=60°,求四边形EBFD的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与轴交于A,B两点,与轴交于点C.
(1)请求出抛物线顶点M的坐标(用含k的代数式表示)以及A,B两点的坐标.
(2)试探究△BCM与△ABC的面积比值是否不变,若不变,试求出这个比值;若改变,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠A=90°,AB=6,AC=8,D为AC中点,E为AB上的动点,将ED绕点D逆时针旋转90°得到FD,连CF,则线段CF的最小值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,点F是边BC的中点,连接AF并延长交DC的延长线于点E,连接AC、BE.
(1)求证:AB=CE;
(2)若,则四边形ABEC是什么特殊四边形?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,的三个顶点坐标分别为.
(1)画出关于轴对称的;
(2)以点为位似中心,在如图所示的网格中画出的位似图形,使与 的相似比为;
(3)点的坐标是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某数学兴趣小组的同学利用标杆测量旗杆(AB)的高度:将一根5米高的标杆(CD)竖在某一位置,有一名同学站在一处与标杆、旗杆成一条直线,此时他看到标杆顶端与旗杆顶端重合,另外一名同学测得站立的同学离标杆3米,离旗杆30米.如果站立的同学的眼睛距地面(EF)1.6米,求旗杆的高度AB.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平面直角坐标系中,抛物线y=﹣x2+4x+m﹣4(m为常数)与y轴的交点为C,M(3,0)与N(0,﹣2)分别是x轴、y轴上的点
(1)当m=1时,求抛物线顶点坐标.
(2)若3≤x≤3+m时,函数y=﹣x2+4x+m﹣4有最小值﹣7,求m的值.
(3)若抛物线与线段MN有公共点,直接写出m的取值范围是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com