【题目】如图,抛物线与轴交于A,B两点,与轴交于点C.
(1)请求出抛物线顶点M的坐标(用含k的代数式表示)以及A,B两点的坐标.
(2)试探究△BCM与△ABC的面积比值是否不变,若不变,试求出这个比值;若改变,请说明理由.
【答案】(1)M(1,-4k),A(-1,0) ,B(3,0) (2)不变,
【解析】
(1)运用配方法把二次函数一般式化为顶点式,求出顶点坐标,解方程求出A、B两点的坐标;
(2)过M作MD⊥x轴于点D,根据三角形的面积公式计算即可
(1)∵
∴拋物线顶点M坐标为(1,-4k),
∵拋物线与轴交于A.B两点,
∴当y=0时, =0,
∵k>0,∴x2-2x-3=0
解得:x1=﹣1,x2=3,
则A.B两点的坐标为(-1,0),(3,0);
(2)不变,
当m=0时,y=-3k,即C(0,-3k),
∴S△ABC=
过M作MD⊥x轴于点D,
则有OD=1,BD=OB-OD=2,
MD=|-4k|=4k,
S△BCM=S△BDM+S梯形OCMD-S△BOC=+
==3k
S△BCM:S△ABC=3k:6k=1:2
△BCM与△ABC的面积比不变,为1:2
科目:初中数学 来源: 题型:
【题目】已知关于x的方程x2+(2k+1)x+k2﹣2=0
(1)若方程有两个不相等的实数根,求k的取值范围;
(2)若方程的两个实数根为x1、x2,且满足x12+x22=11,求k的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知锐角△ABC中,AB=AC,边BC长为6,高AD长为4,正方形PQMN的两个顶点在△ABC一边上,另两个顶点分别在△ABC的另两边上,则正方形PQMN的边长为( )
A.B.或
C.或D.或
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】请将宽为3cm、长为ncm的长方形(n为正整数)分割成若干小正方形,要求小正方形的边长是正整数且个数最少.例如,当n=5cm时,此长方形可分割成如右图的4个小正方形.
请回答下列问题:
(1)n=16时,可分割成几个小正方形?
(2)当长方形被分割成20个小正方形时,求n所有可能的值;
(3)一般地,n>3时,此长方形可分割成多少个小正方形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图抛物线与y轴交于点C,与x轴交于A,B两点,点A在点B左侧.B的坐标为(1,0),且OC=4OB.
(1)求点C坐标及抛物线的解析式;
(2)若点D是线段AC下方抛物线上的动点,求△ACD面积的最大值;
(3)若点E在x轴上,点P在抛物线上.是否存在以A,C,E,P为顶点且以AC为一边的平行四边形?若存在,直接写出P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,AC=BC=,将△ABC绕点A逆时针方向旋转60°到△AB'C'的位置,则图中阴影部分的面积是( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场销售一种商品,进价为每件15元,规定每件商品售价不低于进价,且每天销售量不低于90件经调查发现,每天的销售量y(件)与每个商品的售价x(元)满足一次函数关系,其部分数据如下表所示:
每个商品的售价x(元) | … | 30 | 40 | 50 | … |
每天的销售量y(件) | … | 100 | 80 | 60 | … |
(1)填空:y与x之间的函数关系式是______.
(2)设商场每天获得的总利润为w(元),求w与x之间的函数关系式;
(3)不考虑其他因素,当商品的售价为多少元时,商场每天获得的总利润最大,最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,正方形ABCD的位置如右图所示,点A的坐标为(1,0),点D的坐标为(0,2),延长CB交x轴于点A1,作正方形A1B1C1C,延长C1B1交x轴于点A2,作正方形A2B2C2C1,…按这样的规律进行下去,第1个正方形的面积为____________;第n个正方形的面积为____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+2x+c经过点A(0,3),B(﹣1,0),请解答下列问题:
(1)求抛物线的解析式;
(2)抛物线的顶点为点D,对称轴与x轴交于点E,连接BD,求BD的长;
(3)点F在抛物线上运动,是否存在点F,使△BFC的面积为6,如果存在,求出点F的坐标;如果不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com