【题目】已知关于x的方程x2+(2k+1)x+k2﹣2=0
(1)若方程有两个不相等的实数根,求k的取值范围;
(2)若方程的两个实数根为x1、x2,且满足x12+x22=11,求k的值.
【答案】(1) k>﹣;(2)1
【解析】
(1)根据根的判别式得出关于k的不等式,求出不等式的解集即可;
(2)根据根与系数的关系得出x1+x2=-(2k+1),x1x2=k2-2,根据完全平方公式变形后代入,得出[-(2k+1)]2-2(k2-2)=11,再求出即可.
(1)∵方程有两个不相等的实数根,
∴△=(2k+1)2﹣4×1×(k2﹣2)=4k+9>0,
解得:k>﹣,
即k的取值范围是k>﹣;
(2)根据根与系数的关系得:x1+x2=﹣(2k+1),x1x2=k2﹣2,
∵方程的两个实数根为x1、x2,且满足x12+x22=11,
∴(x1+x2)2﹣2x1x2=11,
[﹣(2k+1)]2﹣2(k2﹣2)=11,
解得:k=﹣3或1,
∵关于x的方程x2+(2k+1)x+k2﹣2=0有两个不相等的实数根,
必须k≥﹣,
∴k=﹣3舍去,
所以k=1.
科目:初中数学 来源: 题型:
【题目】如图,抛物线 y=﹣x2+x+2 与 x 轴交于点 A,B,与 y 轴交于点C.
(1)求 A,B,C的坐标;
(2)直线 l:y=﹣x+2上有一点 D(m,﹣2),在图中画出直线 l和点 D,并判断四边形ACBD的形状,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C的坐标分别为A(﹣3,0),C(1,0),BC=AC
(1)求过点A,B的直线的函数表达式;
(2)在x轴上找一点D,连接DB,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;
(3)在(2)的条件下,如P,Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,问是否存在这样的m,使得△APQ与△ADB相似?如存在,请求出m的值;如不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不等实根.
(1)求实数k的取值范围.
(2)若方程两实根满足|x1|+|x2|=x1·x2,求k的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,于点. 点从点出发,沿线段向点运动,点从点出发,沿线段向点运动,两点同时出发,速度都为每秒1个单位长度,当点运动到时,两点都停止. 设运动时间为秒.
(1)求线段的长;
(2)当为何值时,是直角三角形?
(3)是否存在某一时刻,使得分的面积为1:11?若存在,求出的值,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的弦,半径OC⊥AB交AB于点D,点P是⊙O上AB上方的一个动点(P不与A、B重合),已知∠APB=60°,∠OCB=2∠BCM.
(1)设∠A=α,当圆心O在∠APB内部时,写出α的取值范围;
(2)求证:CM是⊙O的切线;
(3)若OC=4,PB=4,求PC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,BE=FC,CF=2FD,AE、BF交于点G,连接AF,给出下列结论:①AE⊥BF; ②AE=BF; ③BG=GE; ④S四边形CEGF=S△ABG,其中正确的个数为( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与轴交于A,B两点,与轴交于点C.
(1)请求出抛物线顶点M的坐标(用含k的代数式表示)以及A,B两点的坐标.
(2)试探究△BCM与△ABC的面积比值是否不变,若不变,试求出这个比值;若改变,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com