11£®ÒÑÖªA£¨1£¬2£©£¬B£¨m£¬$\frac{1}{2}$£©ÊÇË«ÇúÏßÉϵĵ㣮
Ç󣺣¨1£©¹ýµãA£¬BµÄË«ÇúÏß½âÎöʽ£»
£¨2£©¹ýµãA£¬BµÄÖ±Ïß·½³Ì£»
£¨3£©¹ýµãA£¬BÁ½µãÇÒÓëxÖáÓÐÇÒÖ»ÓÐÒ»¸ö½»µãµÄÅ×ÎïÏß½âÎöʽ£»
£¨4£©£¨i£©ÒÑÖªn£¾0£¬´úÊýʽn+$\frac{4}{n}$ÓÉÅä·½·¨¿ÉµÃn+$\frac{4}{n}$=£¨$\sqrt{n}$-$\frac{2}{\sqrt{n}}$£©2+4£¬Ôò´úÊýʽn+$\frac{4}{n}$µÄ×îСֵÊÇ4£®
£¨ii£©ÈôPΪ˫ÇúÏßAB¶ÎÉϵÄÈÎÒâÒ»µã£¬Çó¡÷PABµÄÃæ»ýµÄ×î´óÖµ£®

·ÖÎö £¨1£©Éè·´±ÈÀý½âÎöʽΪy=$\frac{k}{x}$£¬°ÑA×ø±ê´úÈë·´±ÈÀý½âÎöʽÇó³ökµÄÖµ£¬È·¶¨³ö·´±ÈÀý½âÎöʽ¼´¿É£»
£¨2£©°ÑB×ø±ê´úÈë·´±ÈÀý½âÎöʽÇó³ömµÄֵȷ¶¨³öB×ø±ê£¬ÉèÖ±ÏßAB½âÎöʽΪy=mx+n£¬°ÑAÓëB×ø±ê´úÈëÇó³ömÓënµÄÖµ£¬¼´¿ÉÈ·¶¨³öÖ±ÏßAB½âÎöʽ£»
£¨3£©Èô¶¥µãÔÚxÖáÉÏ£¬Ôò¸ÃÅ×ÎïÏßÓëxÖáÓÐÇÒÖ»ÓÐÒ»¸ö½»µã£¬ÉèÅ×ÎïÏßΪy=a£¨x-h£©2£¬°ÑAÓëB×ø±ê´úÈëÇó³öaÓëhµÄÖµ£¬¼´¿ÉÈ·¶¨³öÂú×ãÌâÒâµÄÅ×ÎïÏß½âÎöʽ£»
£¨4£©£¨i£©¸ù¾ÝÅä·½µÄ½á¹û£¬ÀûÓ÷ǸºÊýµÄÐÔÖÊÇó³öËùÇóʽ×ÓµÄ×îСֵ¼´¿É£»
£¨ii£©Èçͼ£¬ÉèP£¨m£¬$\frac{2}{m}$£©ÎªË«ÇúÏßÉÏAB¶ÎµÄÈÎÒâÒ»µã£¬¹ýµãP×÷PQ¡ÎyÖá½»ABÓÚµãQ£¬±íʾ³öQ×ø±ê£¬½ø¶ø±íʾ³öPQµÄ³¤£¬±íʾ³öSÓëmµÄ¶þ´Îº¯Êý½âÎöʽ£¬ÀûÓöþ´Îº¯ÊýÐÔÖÊÇó³öSµÄ×î´óÖµ¼´¿É£®

½â´ð ½â£º£¨1£©Éè·´±ÈÀý½âÎöʽΪy=$\frac{k}{x}$£¬
°ÑµãA£¨1£¬2£©´úÈëË«ÇúÏßy=$\frac{k}{x}$£¬µÃ£º2=$\frac{k}{1}$£¬¼´k=2£¬
Ôò¹ýµãA¡¢BµÄË«ÇúÏßΪy=$\frac{2}{x}$£»
£¨2£©¡ßµãB£¨m£¬$\frac{1}{2}$£©ÔÚË«ÇúÏßΪy=$\frac{2}{x}$ÉÏ£¬
¡àm=4£¬¼´B£¨4£¬$\frac{1}{2}$£©£¬
ÉèÖ±ÏßAB½âÎöʽΪy=mx+n£¬
°ÑAÓëB×ø±ê´úÈëµÃ£º$\left\{\begin{array}{l}{m+n=2}\\{4m+n=\frac{1}{2}}\end{array}\right.$£¬
½âµÃ£ºm=-$\frac{1}{2}$£¬n=$\frac{5}{2}$£¬
Ôò¹ýµãA¡¢BµÄÖ±Ïß·½³Ìy=-$\frac{1}{2}$x+$\frac{5}{2}$£»
£¨3£©ÉèÅ×ÎïÏßΪy=a£¨x-h£©2£¬
°ÑµãA¡¢B´úÈëµÃ$\left\{\begin{array}{l}{a£¨h-1£©^{2}=2}\\{a£¨h-4£©^{2}=\frac{1}{2}}\end{array}\right.$£¬
½âµÃ£ºa=$\frac{1}{18}$£¬h=7»òa=$\frac{1}{2}$£¬h=3£¬
Ôò¹ýµãA£¬BÁ½µãÇÒÓëxÖáÓÐÇÒÖ»ÓÐÒ»¸ö½»µãµÄÅ×ÎïÏß½âÎöʽΪy=$\frac{1}{18}$£¨x-7£©2»òy=$\frac{1}{2}$£¨x-3£©2£»
£¨4£©£¨i£©¡ßn£¾0£¬
¡àn+$\frac{4}{n}$=£¨$\sqrt{n}$-$\frac{2}{\sqrt{n}}$£©2+4¡Ý4£¬
Ôò´úÊýʽn+$\frac{4}{n}$µÄ×îСֵÊÇ4£»
¹Ê´ð°¸Îª£º4£»
£¨ii£©Èçͼ£¬ÉèP£¨m£¬$\frac{2}{m}$£©ÎªË«ÇúÏßÉÏAB¶ÎµÄÈÎÒâÒ»µã£¬
¹ýµãP×÷PQ¡ÎyÖá½»ABÓÚµãQ£¬ÔòQ£¨m£¬-$\frac{1}{2}$m+$\frac{5}{2}$£©£¬
¡àPQ=-$\frac{1}{2}$m+$\frac{5}{2}$-$\frac{2}{m}$£¬
¡àS=$\frac{15}{4}$-$\frac{3}{m}$-$\frac{3m}{4}$=$\frac{15}{4}$-3£¨$\frac{1}{m}$+$\frac{m}{4}$£©¡Ü$\frac{15}{4}$-3=$\frac{3}{4}$£¬
Ôò¡÷PABµÄÃæ»ýµÄ×î´óÖµÊÇ$\frac{3}{4}$£®

µãÆÀ ´ËÌâÊôÓÚ·´±ÈÀýº¯Êý×ÛºÏÌâ£¬Éæ¼°µÄ֪ʶÓУº´ý¶¨ÏµÊý·¨Çó·´±ÈÀý½âÎöʽ¼°Ò»´Îº¯Êý½âÎöʽ£¬·Ç¸ºÊýµÄÐÔÖÊ£¬ÒÔ¼°»ù±¾²»µÈʽµÄÔËÓã¬ÊìÁ·ÕÆÎÕ´ý¶¨ÏµÊý·¨ÊǽⱾÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÓÃ20cm³¤µÄÉþ×ÓΧ³ÉÒ»¸ö¾ØÐΣ¬Èç¹ûÕâ¸ö¾ØÐεÄÒ»±ß³¤Îªx cm£¬Ãæ»ýÊÇS cm2£¬ÔòSÓëxµÄº¯Êý¹ØÏµÊ½Îª£¨¡¡¡¡£©
A£®S=x£¨20-x£©B£®S=x£¨20-2x£©C£®S=10x-x2D£®S=2x£¨10-x£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®Èçͼ£¬¡ÑOÊÇ¡÷ABCµÄÍâ½ÓÔ²£¬ADÊÇ¡ÑOµÄÖ±¾¶£¬Èô¡ÑOµÄ°ë¾¶Îª12£¬sinB=$\frac{1}{4}$£¬ÔòÏß¶ÎACµÄ³¤¶ÈÊÇ£¨¡¡¡¡£©
A£®6B£®5C£®4D£®3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®Èçͼ£¬µÈ±ß¡÷ABCµÄ±ß³¤Îª6£¬ADÊÇBC±ßÉϵÄÖÐÏߣ¬MÊÇADÉϵ͝µã£¬EÊDZßACÉÏÒ»µã£¬ÈôAE=2£¬ÔòEM+CMµÄ×îСֵΪ£¨¡¡¡¡£©
A£®$\sqrt{26}$B£®3$\sqrt{3}$C£®2$\sqrt{7}$D£®4$\sqrt{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®Èçͼ£¬µãPÔÚ¡÷ABCÊDZßÉÏÒ»¶¨µã£¬ÇëÄãÕÒµ½Ò»Ìõ¹ýµãPµÄÖ±Ïߣ¬°Ñ¡÷ABC·Ö³ÉÃæ»ýÏàµÈµÄÁ½²¿·Ö£¬ÔÚͼÖл­³öÕâÌõÖ±Ïß²¢ÐðÊö»­·¨£ºÈ¡ABÖеãD£¬¹ýµãD×÷DE¡ÎAP½»ABÓÚµãE£¬½»ADÓëµãH£¬Á¬½ÓEP£¬¼´ÎªËùÇ󣮣®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®Èçͼ£¬Ò»ËÒÓæ´¬Î»ÓÚСµºMµÄ±±Æ«¶«45¡ã·½Ïò¡¢¾àÀëСµº180º£ÀïµÄA´¦£¬Óæ´¬´ÓA´¦ÑØÕýÄÏ·½Ïòº½ÐÐÒ»¶Î¾àÀëºó£¬µ½´ïλÓÚСµºÄÏÆ«¶«60¡ã·½ÏòµÄB´¦£¬ÇóÓæ´¬´ÓAµ½BµÄº½Ðйý³ÌÖÐÓëСµºMÖ®¼äµÄ×îС¾àÀ룮£¨½á¹ûÓøùºÅ±íʾ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®Ä³Ð£150ÃûѧÉú²Î¼ÓÊýѧ¾ºÈü£¬Æ½¾ù·ÖΪ75·Ö£¬ÆäÖм°¸ñѧÉúƽ¾ùµÃ85·Ö£¬²»¼°¸ñѧÉúƽ¾ùµÃ55·Ö£¬Ôò²»¼°¸ñѧÉúÈËÊýΪ£¨¡¡¡¡£©
A£®40B£®48C£®50D£®100

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®Èçͼ£¬A£¬B£¬C£¬DÊÇÖ±ÏßlÉϵÄËĵ㣬M£¬N·Ö±ðÊÇAB£¬CDµÄÖе㣬Èç¹ûMN=a£¬BC=b£¬ÇóADµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®·Ö½âÒòʽ»ò¼ÆË㣺
£¨1£©x2-16£»
£¨2£©£¨2m+5n£©£¨5n-2m£©£»
£¨3£©1-16x4£»
£¨4£©16a4-b4£»
£¨5£©9m2-6m+1£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸