精英家教网 > 初中数学 > 题目详情
1.如图,O为直线AB上一点,OD平分∠AOC,OE平分∠COB,
①问:DO与OE有何关系?并说明你的理由.
②图中有几对互余的角?试写出所有你认为互余的角.

分析 ①直接利用角平分线的性质结合平角的定义得出∠DOE=$\frac{1}{2}$(∠AOC+∠BOC)=90°,进而求出答案;
②利用①中所求,得出互余的两角即可.

解答 解:①OD⊥OE,
理由:∵O为直线AB上一点,OD平分∠AOC,OE平分∠COB,
∴∠AOD=∠DOC,∠BOE=∠COE,
∴∠DOE=$\frac{1}{2}$(∠AOC+∠BOC)=90°,
∴OD⊥OE;

②由①可得互余的角有:∠AOD与∠COE,∠AOD与∠BOE,∠DOC与∠COE,∠DOC与∠BOE.

点评 此题主要考查了余角和补角以及角平分线的性质,正确把握角平分线的性质是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

5.(1)分解因式:a3b-ab3
(2)解方程:$\frac{3}{x-2}$+1=$\frac{x-3}{2-x}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.已知:直角梯形OABC中,BC∥OA,∠AOC=90°,以AB为直径的圆M交OC于D、E,连结AD、BD、BE.
(1)在不添加其他字母和线的前提下,直接写出图1中的两对相似三角形.△OAD∽△CDB,△ADB∽△ECB
(2)直角梯形OABC中,以O为坐标原点,A在x轴正半轴上建立直角坐标系(如图2),若抛物线y=ax2-2ax-3a(a<0)经过点A、B、D,且B为抛物线的顶点.
①写出A的坐标(3,0),顶点B的坐标(用a的代数式表示)(1,-4a).
②求抛物线的解析式.
③在x轴下方的抛物线上是否存在这样的点P:过点P作PN⊥x轴于N,使得△PAN与△OAD相似?若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.平面内有一等腰直角三角板(∠ACB=90°) 直线过点A.过点C作CE⊥MN于点E,过点B作BF⊥MN于点F.当点E与点A重合时(如图1),易证:AF+BF=2CE.
(1)当三角板绕点A顺时针旋转至图2的位置时,上述结论是否仍然成立?若成立,请给予证明,若不成立,也请说明理由;
(2)当三角板绕点A顺时针旋转至图3的位置时,线段AF、BF、CE之间又有怎样的数量关系,请写出你的猜想,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图1所示,四边形AEFG与四边形ABCD是正方形,其中G、A、B三点在同一直线上.连接DG、BE.完成下面问题:
(1)求证:BE=DG;
(2)如图2,将正方形AEFG绕点A逆时针转过一定角度时,小明发现:BE=DG且BE⊥DG,请你帮助小明证明这两个结论;
(3)如图3,小明还发现:在旋转过程中,分别连接EG、GB、BD、DE的中点,得到的四边形MNPQ是正方形.若AB=a,AE=b其中a>b,你能帮小明求出正方形MNPQ的面积的范围吗?写出过程.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,已知二次函数y=-x2-3x+4的图象与x轴的交于A,B两点,与y轴交于点C.一次函数的图象过点A、C.
(1)求△ABC的面积.
(2)求一次函数的解析式.
(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围x<0或x>4.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.如图所示,在正方形网格中,图②是由图①经过旋转变换得到的,其旋转中心是点(  )
A.A点B.B点C.C点D.无法确定

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.解下列分式方程.
(1)$\frac{2}{2x+1}+\frac{1}{2x+1}$=1
(2)$\frac{2}{x-1}+\frac{1}{1-x}=\frac{1}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.小于$\sqrt{7}$的正整数有1,2.

查看答案和解析>>

同步练习册答案