精英家教网 > 初中数学 > 题目详情
11.小于$\sqrt{7}$的正整数有1,2.

分析 先求出$\sqrt{7}$的范围,再求出即可.

解答 解:∵2<$\sqrt{7}$<3,
∴小于$\sqrt{7}$的正整数是1,2.
故答案为:1,2.

点评 本题考查了估算无理数的大小的应用,关键是求出$\sqrt{7}$的范围.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

1.如图,O为直线AB上一点,OD平分∠AOC,OE平分∠COB,
①问:DO与OE有何关系?并说明你的理由.
②图中有几对互余的角?试写出所有你认为互余的角.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.已知,在下列各图中,点O为直线AB上一点,∠AOC=60°,直角三角板的直角顶点放在点处.

(1)如图1,三角板一边OM在射线OB上,另一边ON在直线AB的下方,则∠BOC的度数为120°,∠CON的度数为150°;
(2)如图2,三角板一边OM恰好在∠BOC的角平分线OE上,另一边ON在直线AB的下方,此时∠BON的度数为30°;
(3)请从下列(A),(B)两题中任选一题作答.
我选择:A(或B).
(A)在图2中,延长线段NO得到射线OD,如图3,则∠AOD的度数为30°;∠DOC与∠BON的数量关系是∠DOC=∠BON(填“>”、“=”或“<”);
(B)如图4,MN⊥AB,ON在∠AOC的内部,若另一边OM在直线AB的下方,则∠COM+∠AON的度数为150°;∠AOM-∠CON的度数为30°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,OE为∠AOD的平分线,∠COD=$\frac{1}{4}$∠EOC,∠COD=15°,求∠AOD的大小.
解:∵∠COD=$\frac{1}{4}$∠EOC,∠COD=15°,
∴∠EOC=4∠∠COD=60°,
∴∠EOD=∠EOC-∠COD=45°,
∵OE为∠AOD的平分线,
∴∠AOD=2∠EOD=90°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.在数学探究课上,老师出示了这样的探究问题,请你一起来探究:

已知:C是线段AB所在平面内任意一点,分别以AC、BC为边,在AB同侧作等边三角形ACE和BCD,联结AD、BE交于点P.
(1)如图1,当点C在线段AB上移动时,线段AD与BE的数量关系是:AD=BE.
(2)如图2,当点C在直线AB外,且∠ACB<120°,上面的结论是否还成立?若成立请证明,不成立说明理由.
(3)在(2)的条件下,∠APE的大小是否随着∠ACB的大小的变化而发生变化,若变化,写出变化规律,若不变,请求出∠APE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.如图,现实生活中有部分行人选择横穿马路而不走天桥或斑马线,用数学知识解释这一现象的原因,可以为(  )
A.过一点有无数条直线
B.两点之间线段的长度,叫做这两点之间的距离
C.两点确定一条直线
D.两点之间,线段最短

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.如图,菱形ABCD的对角线AC=4cm,把它沿对角线AC方向平移1cm得到菱形EFGH,则图中阴影部分图形的面积与四边形EMCN的面积之比为$\frac{14}{9}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,在△ACE中,CA=CE,∠CAE=30°,∠CAE=30°,⊙O经过点C,且圆的直径AB在线段AE上.
(1)证明:CE是⊙O的切线;
(2)设点D是线段AC上任意一点(不含端点),连接OD,当AB=8时,求$\frac{1}{2}$CD+OD的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.下列运算正确的是(  )
A.4m-m=3B.2m2+3m3=5m5C.xy+xy=2xyD.-(m+2n)=-m+2n

查看答案和解析>>

同步练习册答案