精英家教网 > 初中数学 > 题目详情

【题目】如图,在等腰Rt△ABC中,角ACB=90°,P是线段BC上一动点(与点BC不重合)连接AP,延长BC至点Q,使 CQCP,过点QQHAP于点H,交AB于点M

(1)∠APC=α,求∠AMQ的大小(用含α的式子表示);

(2)在(1)的条件下,过点MMEQB于点E,试证明 PC ME 之间的数量关系,并证明.

【答案】(1)AMQ=45°+α;(2)PCME;

【解析】

(1)由等腰直角三角形的性质得出∠BAC=B=45°,PAB=45°-α,由直角三角形的性质即可得出结论;

(2)由AAS证明APC≌△QME,得出PC=ME,

(1)AMQ=45°+α;理由如下:

∵∠PAC=α,ACB是等腰直角三角形,

∴∠BAC=B=45°,PAB=45°-α,

QHAP,

∴∠AHM=90°,

∴∠AMQ=180°-AHM-PAB=45°+α;

(2)结论:PC=ME.

理由:连接AQ,作MEQB,如图所示:

ACQP,CQ=CP,

∴∠QAC=PAC=α,

∴∠QAM=45°+α=AMQ,

AP=AQ=QM,

APCQME中,

∴△APC≌△QME(AAS),

PC=ME,

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为了了解某地九年级学生参加消防知识竞赛成绩(均为整数),从中抽取了1%的同学的竞赛成绩,整理后绘制了如下的频数直方图,请结合图形解答下列问题:

(1)这个问题中的总体是________________

(2)竞赛成绩在84.589.5分这一小组的频率是_____________

(3)若竞赛成绩在90分以上(90)的同学可以获得奖励,则估计该地获得奖励的九年级学生约有_____人.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,A=BCD=90°BC=DC.延长ADE点,使DE=AB.连接CE.求E的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,BAD=α,BCD=180°﹣α,BD平分ABC.

(1)如图α=90°,根据教材中一个重要性质直接可得 DA=CD,这个性质是__________.

(2)问题解决:如图,求证AD=CD;

(3)问题拓展:如图,在等腰ABC中,BAC=100°,BD平分ABC,求证:BD+AD=BC.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:直线l:y=﹣x,点A1的坐标为(﹣1,0),过点A1作x轴的垂线交直线l于点B1 , 以原点O为圆心,OB1长为半径画弧交x轴负半轴于点A2 , 再过点A2作x轴的垂线交直线l于点B2 , 以原点O为圆心,OB2长为半径画弧交x轴负半轴于点A3…按此作法进行去,点A2016的坐标为( )

A.(﹣22016 , 0)
B.(﹣22017 , 0)
C.(﹣21008 , 0)
D.(﹣21007 , 0)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AC为⊙O的直径,AB=BD,BD交AC于F,BE∥AD交AC的延长线于E点
(1)求证:BE为⊙O的切线;
(2)若AF=4CF,求tan∠E.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形AOCB的边长为4,反比例函数y= (k≠0,且k为常数)的图象过点E,且SAOE=3SOBE
(1)求k的值;
(2)反比例函数图象与线段BC交于点D,直线y= x+b过点D与线段AB交于点F,延长OF交反比例函数y= (x<0)的图象于点N,求N点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,我们把横 、纵坐标都是整数的点叫做整点.已知点

A04),点B轴正半轴上的整点,记△AOB内部(不包括边界)的整点个数为m.当m=3时,点B的横坐标的所有可能值是 ;当点B的横坐标为4nn为正整数)时,m= (用含n的代数式表示.)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在数轴上,点A、B分别表示点﹣5、3,M、N两点分别从A、B同时出发以3cm/s、1cm/s的速度沿数轴向右运动.

(1)求线段AB的长;

(2)求当点M、N重合时,它们运动的时间;

(3)M、N在运动的过程中是否存在某一时刻,使BM=2BN.若存在请求出它们运动的时间,若不存在请说明理由.

查看答案和解析>>

同步练习册答案