精英家教网 > 初中数学 > 题目详情

【题目】如图,在四边形ABCD中,BAD=α,BCD=180°﹣α,BD平分ABC.

(1)如图α=90°,根据教材中一个重要性质直接可得 DA=CD,这个性质是__________.

(2)问题解决:如图,求证AD=CD;

(3)问题拓展:如图,在等腰ABC中,BAC=100°,BD平分ABC,求证:BD+AD=BC.

【答案】(1)角平分线上的点到角的两边距离相等;(2)证明见解析;(3)证明见解析.

【解析】

(1)根据角平分线的性质定理解答;

(2) DEBA BA 延长线于 EDFBC F,证明DEA≌△DFC,根据全等三角形的性质证明;

(3) BC 时截取 BKBD,连接 DK,根据(2)的结论得到 ADDK,根据等腰三角形的判定定理得到 KDKC,结合图形证明.

解:(1)BD 平分∠ABC,BAD=90°,BCD=90°,

DA=DC(角平分线上的点到角的两边距离相等),

故答案为:角平分线上的点到角的两边距离相等;

(2)如图 2,作DEBA BA延长线于 E,DFBC F,

BD 平分∠EBF,DEBE,DFBF,

DE=DF,

∵∠BAD+C=180°,BAD+EAD=180°,

∴∠EAD=C,

DEA DFC 中,

∴△DEA≌△DFC(AAS),

DA=DC;

(3)如图,在 BC 时截取 BK=BD,连接 DK,

AB=AC,A=100°,

∴∠ABC=C=40°,

BD 平分∠ABC,

∴∠DBK=ABC=20°,

BD=BK,

∴∠BKD=BDK=80°,即∠A+BKD=80°, 由(2)的结论得 AD=DK,

∵∠BKD=C+KDC,

∴∠KDC=C=40°,

DK=CK,

AD=DK=CK,

BD+AD=BK+CK=BC.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】海静中学开展以“我最喜爱的职业”为主题的调查活动,围绕“在演员、教师、医生、律师、公务员共五类职业中,你最喜爱哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:
(1)本次调查共抽取了多少名学生?
(2)求在被调查的学生中,最喜爱教师职业的人数,并补全条形统计图;
(3)若海静中学共有1500名学生,请你估计该中学最喜爱律师职业的学生有多少名?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O的直径AB=4,C是⊙O上一点,连接OC.过点C作CD⊥AB,垂足为D,过点B作BM∥OC,在射线BM上取点E,使BE=BD,连接CE.
(1)当∠COB=60°时,直接写出阴影部分的面积;
(2)求证:CE是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解某地区5000名九年级学生体育成绩状况,随机抽取了若干名学生进行测试,将成绩按A、B、C、D四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题
(1)在这次抽样调查中,一共抽取了名学生;
(2)请把条形统计图补充完整;
(3)请估计该地区九年级学生体育成绩为B的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】3分)如图,AD△ABC的角平分线,DE⊥AC,垂足为EBF∥ACED的延长线于点F,若BC恰好平分∠ABFAE=2BF.给出下列四个结论:①DE=DF②DB=DC③AD⊥BC④AC=3BF,其中正确的结论共有( )

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,抛物线y= x2经过点A(x1 , y1)、C(x2 , y2),其中x1、x2是方程x2﹣2x﹣8的两根,且x1<x2 , 过点A的直线l与抛物线只有一个公共点

(1)求A、C两点的坐标;
(2)求直线l的解析式;
(3)如图2,点B是线段AC上的动点,若过点B作y轴的平行线BE与直线l相交于点E,与抛物线相交于点D,过点E作DC的平行线EF与直线AC相交于点F,求BF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等腰Rt△ABC中,角ACB=90°,P是线段BC上一动点(与点BC不重合)连接AP,延长BC至点Q,使 CQCP,过点QQHAP于点H,交AB于点M

(1)∠APC=α,求∠AMQ的大小(用含α的式子表示);

(2)在(1)的条件下,过点MMEQB于点E,试证明 PC ME 之间的数量关系,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠BAC=90°,∠B=60°,△AB′C′可以由△ABC绕点A顺时针旋转90°得到(点B′与点B是对应点,点C′与点C是对应点),连接CC′,则∠CC′B′的度数是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在平行四边形ABDC中,∠ABC的平分线交AD于点E,过点A作BE的垂线交BE于点F,交BC于点G,连接EG,CF.

(1)求证:四边形AEGE是菱形;
(2)若∠ABC=60°,AB=4,AD=5,求CF的长.

查看答案和解析>>

同步练习册答案