精英家教网 > 初中数学 > 题目详情

【题目】海静中学开展以“我最喜爱的职业”为主题的调查活动,围绕“在演员、教师、医生、律师、公务员共五类职业中,你最喜爱哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:
(1)本次调查共抽取了多少名学生?
(2)求在被调查的学生中,最喜爱教师职业的人数,并补全条形统计图;
(3)若海静中学共有1500名学生,请你估计该中学最喜爱律师职业的学生有多少名?

【答案】
(1)解:12÷20%=60,

答:共调查了60名学生.


(2)解:60﹣12﹣9﹣6﹣24=9,

答:最喜爱的教师职业人数为9人.如图所示:


(3)解: ×1500=150(名)

答:该中学最喜爱律师职业的学生有150名.


【解析】(1)用条形图中演员的数量结合扇形图中演员的百分比可以求出总调查学生数;(2)用总调查数减去其他几个职业类别就可以得到最喜爱教师职业的人数;(3)利用调查学生中最喜爱律师职业的学生百分比可求出该中学中的相应人数.
【考点精析】利用扇形统计图和条形统计图对题目进行判断即可得到答案,需要熟知能清楚地表示出各部分在总体中所占的百分比.但是不能清楚地表示出每个项目的具体数目以及事物的变化情况;能清楚地表示出每个项目的具体数目,但是不能清楚地表示出各个部分在总体中所占的百分比以及事物的变化情况.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:如图,D是△ABC的边BC上的一点,且CD=AB,∠BDA=∠BAD,AE是△ABD的中线.

⑴若∠B=60°,求∠C的值;

⑵求证:AD是∠EAC的平分线.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某班共有52名同学,在校广播操比赛中排成方队,先把每位同学都进行编号,然后把各自的位置固定下来,如图,在平面直角坐标系中,每个自然数都对应着一个坐标.例如1的对应点是原点,3的对应点是,16的对应点是.那么最后一名同学的位置对应的坐标是____,全校学生如果排成这样一个大方阵,编号是2015的学生的对应点的坐标是___

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】探究题:

1三条直线相交最少有__________个交点最多有__________个交点分别画出图形并数出图形中的对顶角和邻补角的对数;

2四条直线相交最少有__________个交点最多有__________个交点分别画出图形并数出图形中的对顶角和邻补角的对数;

3依次类推n条直线相交最少有__________个交点最多有__________个交点对顶角有__________邻补角有__________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】a是一个长为2m、宽为2n的长方形,沿图中实现用剪刀均分成四块小长方形,然后按图b的形状拼成一个正方形.

(1)图b中,大正方形的边长是   .阴影部分小正方形的边长是   

(2)观察图b,写出(m+n2,(mn2mn之间的一个等量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明和爸爸从家步行去公园,爸爸先出发一直匀速前进,小明后出发,家到公园的距离为2500m,如图是小明和爸爸所走路程s(m)与步行时间t(min)的函数图象.
(1)直接写出小明所走路程s与时间t的函数关系式;
(2)小明出发多少时间与爸爸第三次相遇?
(3)在速度都不变的情况下,小明希望比爸爸早20min到达公园,则小明在步行过程中停留的时间需作怎样的调整?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了了解某地九年级学生参加消防知识竞赛成绩(均为整数),从中抽取了1%的同学的竞赛成绩,整理后绘制了如下的频数直方图,请结合图形解答下列问题:

(1)这个问题中的总体是________________

(2)竞赛成绩在84.589.5分这一小组的频率是_____________

(3)若竞赛成绩在90分以上(90)的同学可以获得奖励,则估计该地获得奖励的九年级学生约有_____人.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,DABC内一点,CD平分ACBBDCDA=ABD,若AC=5BC=3,则BD的长为(  )

A. 1 B. C. D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,BAD=α,BCD=180°﹣α,BD平分ABC.

(1)如图α=90°,根据教材中一个重要性质直接可得 DA=CD,这个性质是__________.

(2)问题解决:如图,求证AD=CD;

(3)问题拓展:如图,在等腰ABC中,BAC=100°,BD平分ABC,求证:BD+AD=BC.

查看答案和解析>>

同步练习册答案