【题目】如图,一次函数分别与x轴,y轴交于AB两点,与反比例函数交于C、D两点,若CD=5AB,则k的值是( )
A.B.6C.8D.﹣4
【答案】B
【解析】
作CE⊥y轴于E,DF⊥x轴于F,连接EF,DE、CF,设D(x,),得出F(x,0),根据三角形的面积求出△DEF的面积,同法求出△CEF的面积,即可得到△CEF的面积等于△DEF的面积,证出平行四边形BDFE和平行四边形ACEF,得到BD=AC,则AD=3AB,根据平行线分线段成比例定理即可求得D点的坐标,代入反比例函数y=,即可求得k的值.
解:作CE⊥y轴于E,DF⊥x轴于F,连接EF,DE、CF,
设D(x,),则F(x,0),
由图象可知x>0,k>0,
∴△DEF的面积是
同理可知:△CEF的面积是,
∴△CEF的面积等于△DEF的面积,
∴边EF上的高相等,
∴CD∥EF,
∵BD∥EF,DF∥BE,
∴四边形BDFE是平行四边形,
∴BD=EF,
同理EF=AC,
∴AC=BD,
∵CD=5AB,
∴AD=3AB,
由一次函数分别与x轴,y轴交于AB两点,
∴A(﹣1,0),B(0,),
∴OA=1,OB=,
∵OB∥DF,
∴,
∴DF=3,AF=3,
∴OF=3﹣1=2,
∴D(2,3),
∵点D在反比例函数y=图象上,
∴k=2×3=6,
故选:B.
科目:初中数学 来源: 题型:
【题目】已知:如图,四边形ABCD的对角线AC和BD相交于点E,AD=DC,DC2=DEDB,求证:
(1)△BCE∽△ADE;
(2)ABBC=BDBE.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知⊙O为△ABC的外接圆,BC为直径,点E在AB上,过点E作EF⊥BC,点G在FE的延长线上,且GA=GE.
(1)判断AG与⊙O的位置关系,并说明理由.
(2)若BA=8,∠B=37°,求直径BC的长(结果精确到0.01).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O是△ABC的外接圆,AB为直径,OD∥BC交⊙D于点D,交AC于点E,连接AD,BD,CD若AB=10,cos∠ABC=,则tan∠DBC的值是( )
A.B.C.2D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图①是一枚质地均匀的正四面体形状的骰子,每个面上分别标有数字1,2,3,4,图②是一个正六边形棋盘,现通过掷骰子的方式玩跳棋游戏,规则是:将这枚骰子掷出后,看骰子向上三个面(除底面外)的数字之和是几,就从图②中的A点开始沿着顺时针方向连续跳动几个顶点,第二次从第一次的终点处开始,按第一次的方法跳动.
(1)随机掷一次骰子,则棋子跳动到点C处的概率是
(2)随机掷两次骰子,用画树状图或列表的方法,求棋子最终跳动到点C处的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,过抛物线y=ax2+bx上一点A(4,﹣2)作x轴的平行线,交抛物线于另一点B,点C在直线AB上,抛物线交x轴正半轴于点D(2,0),点B与点E关于直线CD对称.
(1)求抛物线的表达式;
(2)①若点E落在抛物线的对称轴上,且在x轴下方时,求点C的坐标.②AE最小值为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知菱形ABCD,点E是AB的中点,AF⊥BC于点F,联结EF、ED、DF,DE交AF于点G,且AE2=EGED.
(1)求证:DE⊥EF;
(2)求证:BC2=2DFBF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,边长为2的正方形ABCD绕点A逆时针旋转45度后得到正方形AB′C′D′,边B′C′与DC交于点O,则四边形AB′OD的周长是___.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,⊙P的圆心是(2,a),半径为2,直线y=﹣x与⊙P相交于A、B两点,若弦AB的长为2,则a的值是( )
A. ﹣2B. ﹣2+C. ﹣2﹣D. ﹣2﹣
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com