精英家教网 > 初中数学 > 题目详情

【题目】如图,在等边中,分别为的中点,延长至点,使,连结

1)求证:

2)猜想:的面积与四边形的面积的关系,并说明理由.

【答案】1)见解析;(2)相等,理由见解析.

【解析】

1)直接利用三角形中位线定理得出DEBC,且DE=BC,再利用平行四边形的判定方法得出答案;
2)分别过点AD,作AMDEDNBC,根据等底等高的三角形面积相等求得SADE=SECF,再根据SADE +S四边形BDEC=SECF +S四边形BDEC可得出结果.

1)证明:∵DE分别为ABAC的中点,

DEABC的中位线,

DEBCDEBC

CFBC

DECFDE=CF

∴四边形DEFC为平行四边形,

CD=EF

2)解:相等.理由如下:

分别过点AD,作AMDEDNBC,则∠AMD=DNB=90°

DEBC

∴∠ADM=DBN

AD=DB

∴△ADM≌△DBN(AAS)

AM=DN

又∵DE=CF

SADE=SECF (等底等高的三角形面积相等).

SADE +S四边形BDEC=SECF +S四边形BDEC

∴△ABC的面积等于四边形BDEF的面积.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,锚标浮筒是打捞作业中用来标记锚或沉船位置的,它的上下两部分是圆柱,中间是一个圆柱(如图,单位:mm).电镀时,如果每平方米用锌0.11kg,要电镀1000个这样的锚标浮筒需要用多少锌?(精确到1kg)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣1,0)和点B,与y轴交于点C,点C关于抛物线对称轴的对称点为点D,抛物线顶点为H(1,2).

(1)求抛物线的解析式;

(2)P为直线AD上方抛物线的对称轴上一动点,连接PA,PD.当SPAD=3,若在x轴上存在一动点Q,使PQ+QB最小,求此时点Q的坐标及PQ+QB的最小值;

(3)若点E为抛物线上的动点,点G,F为平面内的点,以BE为边构造以B,E,F,G为顶点的正方形,当顶点F或者G恰好落在y轴上时,求点E的横坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,OA1B1绕点O逆时针旋转90°,得OA2B2OA2B2绕点O逆时针旋转90°,得OA3B3OA3B3绕点O逆时针旋转90°,得OA4B4;…;若点A1(1,0),B1(1,1),则点B4的坐标是________,点B 2018的坐标是________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司购买了一批型芯片,其中型芯片的单价比型芯片的单价少9元,已知该公司用3120元购买型芯片的条数与用4200元购买型芯片的条数相等.

(1)求该公司购买的型芯片的单价各是多少元?

(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条型芯片?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】东海县是世界水晶之都,某水晶产业大户经销一种水晶新产品,现准备从国内和国外两种销售方案中选择一种进行销售,若只在国内销售,销售价格y(元/件)与月销售x(件)的函数关系式为y=﹣x+180,成本为30/件,无论销售多少,每月还需支出广告费6250元,设月利润为w1(元),若只在国外销售,销售价格为180/件,受各种不确定因素影响,成本为a/件(a为常数,20≤a≤60),当月销售量为x(件)时,每月还需缴纳x2元的附加费,设月利润为w2(元).

(1)当x=1000时,y=   /件,w1=   元.

(2)分别求出w1,w2x间的函数关系式(不必写x的取值范围).

(3)当x为何值时,在国内销售的月利润最大?若在国外销售月利润的最大值与国内销售月利润最大值相同,求a的值.(参考数据:≈1.4,≈1.7,≈2.2).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题背景:如图,点为线段外一动点,且,若,连接,求的最大值.解决方法:以为边作等边,连接,推出,当点的延长线上时,线段取得最大值

问题解决:如图,点为线段外一动点,且,若,连接,当取得最大值时,的度数为_________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,E□ABCD的边BC延长线上一点,AECD于点FFGADAB于点G

1)填空:图中与CEF相似的三角形有__________;(写出图中与CEF相似的所有三角形

2)从(1)中选出一个三角形,并证明它与CEF相似

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的方程

(1)求证:不论k取什么实数值,这个方程总有实数根;

(2)若等腰三角形ABC的一边长为,另两边的长bc恰好是这个方程的两个根,求△ABC的周长.

查看答案和解析>>

同步练习册答案