【题目】已知:如图, ,,,,垂足为点,点为的中点.
(1) 求证:;
(2) 求证:≌;
(3) 联结,试判断与 的位置关系,并证明.
【答案】(1)见解析;(2)见解析;(3)与平行.
【解析】
(1)由,是的中点,根据等腰三角形的三线合一,可得,即可证得;
(2)易证,又由,根据等边对等角,证得,即可根据证得;
(3)首先设交于点,由,即可得,,根据等腰三角形的三线合一,则可证得,则可得,又由同位角相等,两直线平行,证得.
(1)证明:,是的中点(已知),
(等腰三角形的三线合一).
(垂直的定义).
(2)证明:(已知),
(垂直的定义).
(已知),
(等量代换).
(已知),
(两直线平行,内错角相等).
(已知),
(等边对等角).
(等量代换).
在和中,
.
(3)与平行.
证明:如图,交于点,
(已证),
,(全等三角形对应边相等、对应角相等).
(等腰三角形的三线合一).
(垂直的定义)
(已证),
(等量代换).
(同位角相等,两直线平行).
科目:初中数学 来源: 题型:
【题目】暑假期间,小明和父母一起开车到距家200千米的景点旅游.出发前,汽车油箱内储油45升;当行驶150千米时,发现油箱剩余油量为30升.
(1)已知油箱内余油量y(升)是行驶路程x(千米)的一次函数,求y与x的函数关系式;
(2)当油箱中余油量少于3升时,汽车将自动报警.如果往返途中不加油,他们能否在汽车报警前回到家?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,E是AB边上一点,F是AD延长线上一点,BE=DF.
(1)求证:CE=CF;
(2)若点G在AD边上,且∠GCE=45°,BE=3,DG=5,求GE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,△ABC中,AB=BC,DE⊥AB于点E,DF⊥BC于点D,交AC于F.
⑴若∠AFD=155°,求∠EDF的度数;
⑵若点F是AC的中点,求证:∠CFD=∠B.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】完成下面推理过程.
如图:在四边形ABCD中, , 于点D, 于点F,求证:
证明: (已知)
AD// ( )
= ( )
, (已知)
( )
BD// ( )
= ( )
( )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠BAC和∠ABC的平分线相交于点O,过点O作EF∥AB交BC于F,交AC于E,过点O作OD⊥BC于D,下列三个结论: ①∠AOB=90°+;②当∠C=90°时,E,F分别是AC,BC的中点;③若OD=a,CE+CF=2b,则S△CEF=ab,其中正确的是( )
A. ①②③B. ①③C. ①②D. ①
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC=2,∠B=∠C=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.
(1)当∠BDA=115°时,∠EDC=______°,∠DEC=______°;点D从B向C运动时,∠BDA逐渐变______(填“大”或“小”);
(2)当DC等于多少时,△ABD≌△DCE,请说明理由;
(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数.若不可以,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知线段MN=10cm,点C是直线MN上一点,NC=4cm,若P是线段MN的中点,Q是线段NC的中点,则线段PQ的长度是( )
A.7cmB.7cm或3cmC.5cmD.3cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(6分)△ABC与△A′B′C′在平面直角坐标系中的位置如图.
(1)分别写出下列各点的坐标:A′ ; B′ ;C′ ;
(2)说明△A′B′C′由△ABC经过怎样的平移得到? .
(3)若点P(a,b)是△ABC内部一点,则平移后△A′B′C′内的对应点P′的坐标为 ;
(4)求△ABC的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com