【题目】如图,在正方形ABCD中,E是AB边上一点,F是AD延长线上一点,BE=DF.
(1)求证:CE=CF;
(2)若点G在AD边上,且∠GCE=45°,BE=3,DG=5,求GE的长.
【答案】(1)见解析;(2)8.
【解析】(1)根据正方形性质,由(SAS)证△CBE≌△CDF,可得CE=CF;
(2)由(1)△CBE≌△CDF,得∠BCE=∠DCF,故∠BCE+∠ECD=∠DCF+∠ECD,因此,∠ECF=∠BCD=90°,再证∠GCF=∠ECF-∠GCE=45°=∠GCE,可证得△ECG≌△FCG,所以GE=GF=DG+DF=DG+BE.
(1)证明:∵四边形ABCD是正方形,
∴BC=DC,∠B=∠FDC=90°.
在△CBE和△CDF中,
EB=DF,∠B=∠FDC,BC=DC,
∴△CBE≌△CDF(SAS),
∴CE=CF;
(2)解:由(1)得△CBE≌△CDF,
∴∠BCE=∠DCF,
∴∠BCE+∠ECD=∠DCF+∠ECD,
即∠ECF=∠BCD=90°.
又∵∠GCE=45°,
∴∠GCF=∠ECF-∠GCE=45°=∠GCE.
∵在△ECG与△FCG中,
CE=CF,∠GCE=∠GCF,GC=GC,
∴△ECG≌△FCG(SAS),
∴GE=GF=DG+DF=DG+BE=3+5=8.
科目:初中数学 来源: 题型:
【题目】如图,等边三角形的顶点A(1,1)、B(3,1),规定把等边△ABC“先沿x轴翻折,再向左平移1个单位”为一次变换,如果这样连续经过2018次变换后,等边△ABC的顶点C的坐标为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在长方形中,为平面直角坐标系的原点,点在轴上,点在轴上,点在第一象限内,点从原点出发,以每秒个单位长度的速度沿着的路线移动(即沿着长方形的边移动一周).
(1)分别求出,两点的坐标;
(2)当点移动了秒时,求出点的坐标;
(3)在移动过程中,当三角形的面积是时,求满足条件的点的坐标及相应的点移动的时间.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,二次函数y=(x-a)(x-3)(0<a<3)的图象与x轴交于点A、B(点A在点B的左侧),与y轴交于点D,过其顶点C作直线CP⊥x轴,垂足为点P,连接AD、BC.
(1)求点A、B、D的坐标;
(2)若△AOD与△BPC相似,求a的值;
(3)点D、O、C、B能否在同一个圆上,若能,求出a的值,若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,点D为线段BC上一点(不含端点),AP平分∠BAD交BC于E,PC与AD的延长线交于点F,连接EF,且∠PEF=∠AED.
(1)求证:AB=AF;
(2)若△ABC是等边三角形.
①求∠APC的大小;
②想线AP,PF,PC之间满足怎样的数量关系,并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线l1∥l2∥l3,等腰直角三角形ABC的三个顶点A,B,C分别在l1,l2,l3上,∠ACB=90°,AC交l2于点D,已知l1与l2的距离为1,l2与l3的距离为3,则的值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知直线l1:y=kx+b经过点A(5,0),B(1,4).
(1)求直线AB的函数关系式;
(2)若直线l2:y=2x-4与直线AB相交于点C,求点C的坐标;
(3)过点P(m,0)作x轴的垂线,分别交直线点l1,l2与点M,N,若m>3, 当MN=3时,求m 的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com