精英家教网 > 初中数学 > 题目详情

【题目】如图,已知ABC内接于⊙OAB是⊙O的直径,点F在⊙O上,且满足,过点C作⊙O的切线交AB的延长线于D点,交AF的延长线于E点.

1)求证:AEDE

2)若∠CBA60°AE3,求AF的长.

【答案】1)见解析;(2AF2

【解析】

(1)首先连接OC,由OC=OA=,易证得OCAE,又由DE切⊙O于点C,易证得AEDE

(2)AB是⊙O的直径,可得△ABC是直角三角形,易得△AEC为直角三角形,根据AE=3求得AC的长,然后连接OF,可得△OAF为等边三角形,知AF=OA=AB,在△ACB中,利用已知条件求得答案.

1)证明:连接OC

OCOA

∴∠BACOCA

=

∴∠BACEAC

∴∠EACOCA

OCAE

DEO于点C

OCDE

AEDE

2)解:ABO的直径,

∴△ABC是直角三角形,

∵∠CBA60°

∴∠BACEAC30°

∵△AEC为直角三角形,AE3

AC2

连接OF

OFOAOAFBAC+∠EAC60°

∴△OAF为等边三角形,

AFOAAB

Rt△ACB中,AC2CBA60°

AB4

AF2

故答案为:(1)证明见解析;(2)2.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知,数轴上三个点A、O、P,点O是原点,固定不动,点A和B可以移动,点A表示的数为,点B表示的数为.

(1)若A、B移动到如图所示位置,计算的值.

(2)在(1)的情况下,B点不动,点A向左移动3个单位长,写出A点对应的数,并计算.

(3)在(1)的情况下,点A不动,点B向右移动15.3个单位长,此时大多少?请列式计算.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将平行四边形纸片ABCD按如图方式折叠,使点C与点A重合,点D落到D’处,折痕为EF.

(1)、求证:△ABE≌△AD’F;

(2)、连接CF,判断四边形AECF是否为平行四边形?请证明你的结论。

(3)、若AE=5,求四边形AECF的周长。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.

(1)如图1,等腰直角四边形ABCD,AB=BC,ABC=90°

若AB=CD=1,ABCD,求对角线BD的长.

若ACBD,求证:AD=CD

(2)如图2,在矩形ABCD中,AB=5,BC=9,点P是对角线BD上一点,且BP=2PD,过点P作直线分别交边AD,BC于点E,F,使四边形ABFE是等腰直角四边形,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,已知ABC三个顶点的坐标分别是A(﹣31),B(﹣1,﹣1),C(﹣22).

1)画出ABC关于y轴对称的A1B1C1,并写出点A1B1C1的坐标;

2)画出ABC绕点B逆时针旋转90°所得到的A2B2C2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知ABC三个顶点的坐标分别是A(2,2),B(4,0),C(4,﹣4).

(1)请在图中,画出ABC向左平移6个单位长度后得到的△A1B1C1

(2)以点O为位似中心,将ABC缩小为原来的,得到△A2B2C2,请在图中y轴右侧,画出△A2B2C2,并求出∠A2C2B2的正弦值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小张骑自行车匀速从甲地到乙地,在途中因故停留了一段时间后,仍按原速骑行,小李骑摩托车比小张晚出发一段时间,以800/分的速度匀速从乙地到甲地,两人距离乙地的路程y()与小张出发后的时间x()之间的函数图象如图所示.

(1)求小张骑自行车的速度;

(2)求小张停留后再出发时yx之间的函数表达式;

(3)求小张与小李相遇时x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知开口向下的抛物线y=ax2-2ax+2y轴的交点为A,顶点为B,对称轴与x轴的交点为C,点A与点D关于对称轴对称,直线BDx轴交于点M,直线AB与直线OD交于点N

(1)求点D的坐标.

(2)求点M的坐标(用含a的代数式表示).

(3)当点N在第一象限,且∠OMB=ONA时,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形中,,按以下步骤作图:①分别以点和点为圆心,为圆心,大于号的长为半径面狐,两弧交于点:②做直线,且恰好经过点,与交于点,连接,则的值为(

A. B. C. D.

查看答案和解析>>

同步练习册答案