精英家教网 > 初中数学 > 题目详情
14.方程(x-2)$\sqrt{x-4}$=0的解为x=4.

分析 因为(x-2)$\sqrt{x-4}$=0可以得出x-2=0,x-4=0且x-4≥0,由此求得原方程的解即可.

解答 解:∵(x-2)$\sqrt{x-4}$=0,
∴x-2=0,x-4=0且x-4≥0,
解得x=2,x=4且x≥4,
∴x=4.
故答案为:x=4.

点评 此题考查解无理方程,注意被开方数必须大于或等于0,求此类方程的解必须满足这一条件.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

4.如图,AB∥CD,AE与CE相交于点E,∠A=25°,∠C=30°,则∠E的度数是55°.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.下列运算中,正确的是(  )
A.x2y-yx2=0B.2x2+x2=3x4C.4x+y=4xyD.2x-x=1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.甲、乙两车从A城出发匀速行驶至B城,在整个行驶过程中,甲、乙离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示,根据图象信息解答下列问题:
(1)乙车比甲车晚出发多少时间?
(2)乙车出发后多少时间追上甲车?
(3)求乙车出发多少时间,两车相距50千米?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.(1)解方程:$\frac{1}{x-2}$-1=$\frac{x}{x-2}$;
(2)已知x2+x-1=0,求$\frac{1+x}{x-1}$÷$\frac{x+1}{x}$-$\frac{x({x}^{2}-1)}{{x}^{2}-2x+1}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.要使直线y=x-1向上平移后经过点(-2,2),那么应向上平移5个单位.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,直线y=3x+3交x轴于A点,交y轴于B点,过A、B两点的抛物线交x轴于另一点C(3,0).
(1)求A、B的坐标;
(2)求抛物线的解析式;
(3)在抛物线的对称轴上求一点P,使得△PAB的周长最小,并求出最小值;
(4)在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图1,在平面直角坐标系中,第一象限内长方形ABCD,AB∥y轴,点A(1,1),点C(a,b),满足$\sqrt{a-5}$+|b-3|=0.

(1)求长方形ABCD的面积.
(2)如图2,长方形ABCD以每秒1个单位长度的速度向右平移,同时点E从原点O出发沿x轴以每秒2个单位长度的速度向右运动,设运动时间为t秒.
①当t=4时,直接写出三角形OAC的面积为3;
②若AC∥ED,求t的值;
(3)在平面直角坐标系中,对于点P(x,y),我们把点P′(-y+1,x+1)叫做点P的伴随点,已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,An
①若点A1的坐标为(3,1),则点A3的坐标为(-3,1),点A2014的坐标为(0,4);
②若点A1的坐标为(a,b),对于任意的正整数n,点An均在x轴上方,则a,b应满足的条件为-1<a<1,0<b<2.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.某同学使用计算器求30个数据的平均数时,错将其中一个数据108输入为18,那么由此求出的平均数与实际平均数的差是(  )
A.3.5B.3C.0.5D.-3

查看答案和解析>>

同步练习册答案