精英家教网 > 初中数学 > 题目详情
已知二次函数y=-x2+2x+m的部分图象如图所示,则关于x的一元二次方程-x2+2x+m=0的解为
 
考点:抛物线与x轴的交点
专题:
分析:由二次函数y=-x2+2x+m的部分图象可以得到抛物线的对称轴和抛物线与x轴的一个交点坐标,然后可以求出另一个交点坐标,再利用抛物线与x轴交点的横坐标与相应的一元二次方程的根的关系即可得到关于x的一元二次方程-x2+2x+m=0的解.
解答:解:依题意得二次函数y=-x2+2x+m的对称轴为x=1,与x轴的一个交点为(3,0),
∴抛物线与x轴的另一个交点横坐标为1-(3-1)=-1,
∴交点坐标为(-1,0)
∴当x=-1或x=3时,函数值y=0,
即-x2+2x+m=0,
∴关于x的一元二次方程-x2+2x+m=0的解为x1=-1或x2=3.
故答案为:x1=-1或x2=3.
点评:本题考查的是关于二次函数与一元二次方程,在解题过程中,充分利用二次函数图象,根据图象提取有用条件来解答,这样可以降低题的难度,从而提高解题效率.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,△ABC中,AD⊥BC于D,下列条件:(1)∠B+∠DAC=90°;(2)∠B=∠DAC;(3)
CD
AD
=
AC
AB
;(4)AB2=BD•BC.其中一定能够判定△ABC是直角三角形的有(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:初中数学 来源: 题型:

阅读下面的材料:
1×2=
1
3
(1×2×3-0×1×2),
2×3=
1
3
(2×3×4-1×2×3),
3×4=
1
3
(3×4×5-2×3×4)
由以上三个等式相加可得
1×2+2×3+3×4=
1
3
×3×4×5=20
根据以上材料,请你计算下列各题:
(1)1×2+2×3+3×4+…+10×11(写出过程);
(2)1×2+2×3+3×4+…+n(n+1)=
(3)模仿上面的材料,试计算1×2×3+2×3×4+3×4×5+…+10×11×12的结果(写过程)

查看答案和解析>>

科目:初中数学 来源: 题型:

日军从1937年12月13日攻占南京开始持续了6周,在南京犯下了大规模屠杀强奸纵火抢劫等战争罪行和反人类罪行,其中屠杀我同胞大约300000人,用科学记数法表示该数据为
 
人.

查看答案和解析>>

科目:初中数学 来源: 题型:

观察下列各式计算结果:
1-
1
22
=1-
1
4
=
3
4
=
1
2
×
3
2

1-
1
32
=1-
1
9
=
8
9
=
2
3
×
4
3

1-
1
42
=1-
1
16
=
15
16
=
3
4
×
5
4

1-
1
52
=1-
1
25
=
24
25
=
4
5
×
6
5

(1)用你发现的规律填写下列式子的结果:
1-
1
102
=
 
.1-
1
1002
=
 
.1-
1
20142
=
 

(2)用你发现的规律计算:
(1-
1
22
)×(1-
1
32
)×(1-
1
42
)×…×(1-
1
20132
)×(1-
1
20142
).

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,一艘科学考察船由港口A出发沿正北方向航行,在航线的一侧有两个小岛C、D.考察船在A处时,测得小岛C在船的正西方,小岛D在船的北偏西30°方向.考察船向北航行了12千米到B处时,测得小岛C在船的南偏西30°方向,小岛D在船的南偏西60°方向.求小岛C、D之间的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线y=ax2+bx+c与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C(0,-3)
(1)求抛物线的解析式;
(2)在x轴下方的抛物线上是否存在在一点D,使四边形ABCD的面积最大?若存在,请求出点D的坐标;若不存在,请说明理由;
(3)在抛物线y=ax2+bx+c上求点E,使△BCE是以BC为直角边的直角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

同时抛掷两枚质地均匀的骰子,骰子的六个面分别刻有1到6的点数,朝上的面的点数中,一个点数能被另一个点数整除的概率是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,菱形ABCD中,若∠ABC=120°,BD=1,则AC=
 

查看答案和解析>>

同步练习册答案