【题目】如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AC=15cm,点O在中线CD上,设OC=xcm,当半径为3cm的⊙O与△ABC的边相切时,x= .
【答案】2 ,3 或6
【解析】解:Rt△ABC中,∠ACB=90°,∠A=30°, ∴∠B=60°,AB=10 ,
∵CD为中线,
∴CD=AD=BD= AB=5 ,
∴∠BDC=∠BCD=∠B=60°,∠ACD=∠A=30°,
∵半径为3cm的⊙O,
∴DE=3,
①当⊙O与AB相切时,
如图1,
过点O做OE⊥AB于E,
在RT△ODE中,∠BDC=60°,DE=3,
∴sin∠BDC= ,
∴OD= = =2 ;
∴x=OC=CD﹣OD=5 ﹣2 =3 ;
②当⊙O与BC相切时,
如图2,
过O作OE⊥BC,
在RT△OCE中,∠BCD=60°,OE=3,
∴sin∠BCD= ,
∴OC= = =2 cm;
∴x=OC=2 ;
③当⊙O与AC相切时,
如图3,
过O作OE⊥AC于E,
在RT△OCE中,∠ACD=30°,OE=3,
∴sin∠ACD= ,
∴OC= = =6,
∴x=OC=6.
所以答案是2 ,3 或6.
【考点精析】解答此题的关键在于理解含30度角的直角三角形的相关知识,掌握在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半,以及对切线的性质定理的理解,了解切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径.
科目:初中数学 来源: 题型:
【题目】如图,在三角形纸片ABC中,∠ACB=90°,BC=3,AB=5,在AC上取一E,以BE为折痕,使AB的一部分与BC重合,A与BC延长线上的点D重合,则CE的长度为( )
A. 1 B. C. 2 D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】中央政府为了应对因人口老龄化而造成的劳动力短缺等问题,拟定出台“延迟退休年龄政策”,为了了解人们对“延迟退休年龄政策”的态度,责成人社部进行调研,人社部从网上年龄在15~65岁的人群中随机调查100人,调查数据的频率分布直方图和支持“延迟退休”的人数与年龄的统计结果如下
年龄 | [15,25) | [25,35) | [35,45) | [45,55) | [55,65] |
支持“延迟退休”的人数 | 15 | 5 | 15 | 28 | 17 |
(1)由以上统计数据填2×2列联表,并判断是否95%的把握认为以45岁为界点的不同人群对“延迟退休年龄政策”的支持有差异;
45岁以下 | 45岁以上 | 总计 | |
支持 | |||
不支持 | |||
总计 |
(2)若以45岁为分界点,从不支持“延迟退休”的人中按分层抽样的方法抽取8人参加某项活动,现从这8人中随机抽2人. ①抽到1人是45岁以下时,求抽到的另一人是45岁以上的概率;
②记抽到45岁以上的人数为X,求随机变量X的分布列及数学期望.
P(K2≥k0) | 0.100 | 0.050 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 6.635 | 10.828 |
.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知a≥0,函数f(x)=(x2﹣2ax)ex .
(1)当x为何值时,f(x)取得最小值?证明你的结论;
(2)设f(x)在[﹣1,1]上是单调函数,求a的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线 交x轴的正半轴于点A , 点B( ,a)在抛物线上,点C是抛物线对称轴上的一点,连接AB、BC , 以AB、BC为邻边作□ABCD , 记点C纵坐标为n ,
(1)求a的值及点A的坐标;
(2)当点D恰好落在抛物线上时,求n的值;
(3) 记CD与抛物线的交点为E,连接AE,BE,当三角形AEB的面积为7时,n=
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了了解某水库养殖鱼的有关情况,从该水库多个不同位置捕捞出200条鱼,称得每条鱼的质量(单位:千克),并将所得数据分组,绘制了直方图
(1)根据直方图提供的信息,这组数据的中位数落在范围内;
(2)估计数据落在1.00~1.15中的频率是;
(3)将上面捕捞的200条鱼分别作一记号后再放回水库.几天后再从水库的多处不同的位置捕捞150条鱼,其中带有记号的鱼有10条,请根据这一情况估算该水库中鱼的总条数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD中,两对角线相交于E,且E为对角线BD的中点,∠DAE=30°,∠BCE=120°.若CE=1,BC=2,则AC的长为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2﹣ x﹣2(a≠0)的图像与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0).
(1)求抛物线的解析式;
(2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标;
(3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明家今年种植的“红灯”樱桃喜获丰收,采摘上市20天全部销售完,小明对销售情况进行跟踪记录,并将记录情况绘成图象,日销售量y(单位:千克)与上市时间x(单位:天)的函数关系如图1所示,樱桃价格z(单位:元/千克)与上市时间x(单位:天)的函数关系式如图2所示.
(1)观察图象,直接写出日销售量的最大值;
(2)求小明家樱桃的日销售量y与上市时间x的函数解析式;
(3)试比较第10天与第12天的销售金额哪天多?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com