分析 (1)连接BF,在FE上截取FH=BF,连接BH,易证△ABF≌△ACF,即可求得BF=CF、∠ACF=∠ABF,求出∠AEF=∠ACE=∠ABF,求出A、E、B、F四点共圆,求出∠BFE=∠BAE=60°,根据三角形外角性质求出∠DCF即可;
(2)求出△BFH是等边三角形,根据等边四边形的性质求出BF=HF=BH,求出CF长,进而可以求证△EBH≌△ABF,即可求得EH=AF=9,即可求得EF的长.
解答 解:(1)连接BF,在FE上截取FH=BF,连接BH,
∵AB=AC,AD是BC中线,
∴∠BAD=∠CAD,
在△ABF和△ACF中,
$\left\{\begin{array}{l}{AB=AC}\\{∠BAD=∠CAD}\\{AF=AF}\end{array}\right.$,
∴△ABF≌△ACF(SAS),
∴BF=CF,∠ACF=∠ABF,
∵AC=AB=AE,
∴∠ACF=∠AEF,
∴∠AEF=∠ABF,
∴A、E、B、F四点共圆,
∴∠BFE=∠EAB=60°,
∵FH=BF,
∴∠BFH=∠BHF=60°,
∵AB=AC,AD是BC边上的中线,
∴AD⊥BC,
∴BF=CF,
∴∠DCF=∠DBF,
∵∠DCF+∠DBF=∠BFH=60°,
∴∠DCF=30°;
(2)∵AD⊥BC,∠DCF=30°,DF=2,
∴CF=2DF=4,
∵由(1)知BF=CF,
∴BF=4,
∵BF=BH,∠BFH=60°,
∴△BFH为等边三角形,
∴BF=FH=BH=4,∠FBH=∠EBA=60°,
∴∠ABF=∠EBH=60°-∠ABH,
在△EBH和△ABF中,
$\left\{\begin{array}{l}{EB=AB}\\{∠EBH=∠ABF}\\{HB=FB}\end{array}\right.$,
∴△EBH≌△ABF(SAS),
∴EH=AF,
∵AF=9,
∴EH=9,
∴EF=EH+HF=9+4=13.
点评 本题考查了全等三角形的判定,等边三角形的性质和判定等知识点,还考查了全等三角形对应边、对应角相等的性质,本题中求证△ABF≌△ACF和△EBH≌△ABF是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com