【题目】在直角三角形,两条直角边分别为6cm,8cm,斜边长为10cm,若分别以一边旋转一周(①结果用π表示;②你可能用到其中的一个公式,V圆柱=πr2h,V球体=,V圆锥=h)
(1)如果绕着它的斜边所在的直线旋转一周形成的几何体是?
(2)如果绕着它的直角边6所在的直线旋转一周形成的几何体的体积是多少?
(3)如果绕着它的斜边10所在的直线旋转一周形成的几何体的体积与绕着直角边8所在的直线旋转一周形成的几何体的体积哪个大?
【答案】(1)两个圆锥形成的几何体;
(2)V圆锥128π;
(3)绕着直角边8所在的直线旋转一周形成的几何体的体积大.
【解析】
试题分析:(1)作斜边上的高分成两个直角三角形旋转即可;
(2)确定圆锥的高与半径即可求出体积;
(3)分别求出两种图形的体积,再比较即可.
解:(1)两个圆锥形成的几何体;
(2)V圆锥=πr2h=π×82×6=128π,
(3)①如图=,解得r=,
所以绕着斜边10所在的直线旋转一周形成的几何体的体积为V圆锥=πr2h=π×()2×10=76.8π
②绕着直角边8所在的直线旋转一周形成的几何体的体积为V圆锥=πr2h=π×62×8=96π,
故绕着直角边8所在的直线旋转一周形成的几何体的体积大.
科目:初中数学 来源: 题型:
【题目】数学实验室:
点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.
利用数形结合思想回答下列问题:
①数轴上表示2和5两点之间的距离是 ,数轴上表示1和﹣3的两点之间的距离是 .
②数轴上表示x和﹣2的两点之间的距离表示为 .数轴上表示x和5的两点之间的距离表示为 .
③若x表示一个有理数,则|x﹣1|+|x+3|的最小值= .
④若x表示一个有理数,且|x+3|+|x﹣2|=5,则满足条件的所有整数x的是 .
⑤若x表示一个有理数,当x为 ,式子|x+2|+|x﹣3|+|x﹣5|有最小值为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在一次数学活动课上,张明用17个边长为1的小正方形搭成了一个几何体,然后他请王亮用其他同样的小正方体在旁边再搭一个几何体,使王亮所搭几何体恰好可以和张明所搭几何体拼成一个无缝隙的大长方体(不改变张明所搭几何体的形状),那么王亮至少还需要 个小立方体,王亮所搭几何体的表面积为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】九年级数学兴趣小组经过市场调查,得到某种运动服每月的销量与售价的相关信息如表:
售价(元/件) | 100 | 110 | 120 | 130 | … |
月销量(件) | 200 | 180 | 160 | 140 | … |
已知该运动服的进价为每件60元,设售价为x元.
(1)求月销售m件与售价x元/件之间的函数表达式.
(2)设销售该运动服的月利润为y元,写出y与x之间的函数表达式,并求出售价x为多少时,当月的利润最大,最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴为x=,且经过点(2,0),有下列说法:①abc<0;②a+b=0;③4a+2b+c<0;④若(0,y1),(1,y2)是抛物线上的两点,则y1=y2.上述说法正确的是( )
A.①②④ B.③④ C.①③④ D.①②
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC是等腰直角三角形,∠A=90°,点P、Q分别是AB、AC上的一动点,且满足BP=AQ,D是BC的中点.
(1)求证:△PDQ是等腰直角三角形;
(2)当点P运动到什么位置时,四边形APDQ是正方形,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】82m×4n÷2m﹣n
(2)6m362m÷63m﹣2
(3)(a4a3÷a2)3
(4)(﹣10)2+(﹣10)0+10﹣2×(﹣102)
(5)(x6y5+x5y4﹣x4y3)÷x3y3
(6)x﹣(2x﹣y2)+(x﹣y2)
(7)2﹣[x﹣(x﹣1)]﹣(x﹣1)
(8)5xy2﹣{2x2y﹣[3xy2﹣(xy2﹣2x2y)]÷(﹣xy)}.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com