【题目】中国有个名句“运筹帷幄之中,决胜千里之外”.其中的“筹”原意是指《孙子算经》中记载的“算筹”.算筹是古代用来进行计算的工具,它是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放形式有纵横两种形式(如图).
当表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间:个位、百位、万位数用纵式表示;十位,千位,十万位数用横式表示;“0”用空位来代替,以此类推.例如3306用算筹表示就是,则2022用算筹可表示为( )
A. B. C. D.
科目:初中数学 来源: 题型:
【题目】某班同学响应“阳光体育运动”号召,利用课外活动积极参加体育锻炼,每位同学从长跑、铅球、立定跳远、篮球定点投篮中任选一项进行了训练,训练前后都进行了测试,现将项目选择情况及训练后篮球定点投篮进球数进行整理,作出如下统计图表.
训练后篮球定点投篮测试进球统计表:
进球数(个) | 8 | 7 | 6 | 5 | 4 | 3 |
人数 | 2 | 1 | 4 | 7 | 8 | 2 |
(1)选择长跑训练的人数占全班人数的百分比是 ,该班共有同学 人.
(2)求训练后篮球定点投篮人均进球数为多少个?
(3)根据测试资料,参加篮球定点投篮的学生训练后比训练前的人均进球增加了25%,求参加训练之前的人均进球数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知数轴上A,B两点对应的有理数分别是,15,两只电子蚂蚁甲,乙分别从A,B两点同时出发相向而行,甲的速度是3个单位/秒,乙的速度是6个单位/秒
(1)当乙到达A处时,求甲所在位置对应的数;
(2)当电子蚂蚁运行秒后,甲,乙所在位置对应的数分别是多少?(用含的式子表示)
(3)当电子蚂蚁运行()秒后,甲,乙相距多少个单位?(用含的式子表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】肥西素有“淮军故里、改革首县、花木之乡”之美誉,现就肥西以下五个旅游景点进行调查,A.“官亭林海”,B.“三河古镇”,C.“紫蓬山国家森林公园”,D.“小井庄”,E.“刘铭传故居”,为了解学生最喜欢哪一个景点(每人只选取一种),随机抽取了部分学生进行调查,将调查结果绘制成如下不完整的统计表和统计图.根据以上信息解答下列问题:
(1)本次接受调查的总人数为______人,统计表中m=______,n=______.
(2)补全条形统计图.
(3)若把条形统计图改为扇形统计图,则景点“紫蓬山国家森林公园”、“小井庄”、“刘铭传故居”所在扇形的圆心角度数分别是__________、___________、___________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,矩形ABCD的对角线AC经过坐标原点O,矩形的边分别平行于坐标轴,点B在函数(k≠0,x>0)的图象上,点D的坐标为(﹣4,1),则k的值为( )
A.B.C.4D.﹣4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们规定:有理数用数轴上点表示,叫做点在数轴上的坐标;有理数用数轴上点表示,叫做点在数轴上的坐标.表示数轴上的两点,之间的距离.
(1)借助数轴,完成下表:
3 | 2 | 1 | 1 |
1 | 5 | ______ | ______ |
2 | -3 | ______ | ______ |
-4 | 1 | ______ | ______ |
-5 | -2 | ______ | ______ |
-3 | -6 | ______ | ______ |
(2)观察(1)中的表格内容,猜想______;(用含,的式子表示,不用说理)
(3)已知点在数轴上的坐标是-2,且,利用(2)中的结论求点在数轴上的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,射线OM上有三点A、B、C,OC=45cm, BC=15cm, AB=30cm,已知动点P、Q同时运动,其中动点P从点O出发沿OM方向以速度2cm/s匀速运动,动点Q从点C出发沿CA方向匀速运动,当点Q运动到点A时,点Q停止运动(点P继续运动).设运动时间为t秒.
(1)求点P运动到点B所用的时间;
(2)若点Q运动速度为每秒1cm,经过多少秒时,点P和点Q的距离为30cm;
(3)当PA=2PB时,点Q恰好在线段AB的三等分点的位置,求点Q的速度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(2016广西桂林市)已知任意三角形的三边长,如何求三角形面积?
古希腊的几何学家海伦解决了这个问题,在他的著作《度量论》一书中给出了计算公式﹣﹣海伦公式S=(其中a,b,c是三角形的三边长,p=,S为三角形的面积),并给出了证明
例如:在△ABC中,a=3,b=4,c=5,那么它的面积可以这样计算:
∵a=3,b=4,c=5,∴p==6,∴S===6.
事实上,对于已知三角形的三边长求三角形面积的问题,还可用我国南宋时期数学家秦九韶提出的秦九韶公式等方法解决.
如图,在△ABC中,BC=5,AC=6,AB=9
(1)用海伦公式求△ABC的面积;
(2)求△ABC的内切圆半径r.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】操作探究:已知在纸面上有一数轴(如图所示).
左右折叠纸面,折痕所在的直线与数轴的交点为“对折中心点”
操作一:
(1)左右折叠纸面,使1表示的点与-1表示的点重合,则-3表示的点与 表示的点重合;
操作二:
(2)左右折叠纸面,使-1表示的点与3表示的点重合,回答以下问题:
①对折中心点所表示的数为 ,对折后5表示的点与数 表示的点重合;
②若数轴上A.B两点之间距离为11(A在B的左侧),且A.B两点经折叠后重合,求A.B两点表示的数是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com