【题目】如图,以 为原点的直角坐标系中, 点的坐标为(0, 1),直线 交轴于点. 为线段上一动点,作直线,交直线于点. 过点作直线平行于轴,交轴于点 ,交直线于点.
(1)当点在第一象限时,求证:;
(2)当点在第一象限时,设长为,四边形的面积为,请求出与间的函数关系式,并写出自变量的取值范围;
(3)当点在线段上移动时,点也随之在直线上移动,是否可能成为等腰三角形?如果可能,求出所有能使成为等腰直角三角形的点的坐标;如果不可能,请说明理由.
【答案】(1)证明见解析;(2)S=m2﹣m+1(0<m<);(3)使△PBC成为等腰三角形的点P的坐标为(0,1)或(,1﹣).
【解析】
(1)由题意可得△OAB为等腰直角三角形,因为MN∥OB,易得△AMP也是等腰直角三角形,进而可得OM=PN,再根据∠OPC=90°,同角的余角相等可得∠MOP=∠NPC,则通过“角边角”即可得证;
(2)设长为,根据题意可用m表示出AM、MP、OM等的长,再根据S=S矩OBNM﹣2S△POM即可得到S与m的函数关系式,然后根据C再第一象限,得出CN的取值范围,进而得到m的取值范围;
(3)分两种情况进行讨论:当C在第一象限时,要使△PCB为等腰三角形,那么PC=CB,∠PBC=45°,此时P与A重合,则可得P点坐标;当C在第四象限时,PB=BC,在等腰直角三角形PBN中,用m表示出BP的长,进而得到BC的长,由(1)可得MP=NC,则可列出关于m的方程,求得m的值,进而得到P点坐标.
(1)∵OM∥BN,MN∥OB,∠AOB=90°,
∴四边形OBNM为矩形,
∴MN=OB=1,∠PMO=∠CNP=90°,
∵OA=OB,
∴∠OAB=∠OBA=45°,
∴∠APM=∠ABO=45°,
∴∠MAP=∠MPA=45°,
∴AM=PM,
∴OM=AO﹣AM,PN=OB﹣PM,即OM=PN,
又∵∠OPC=90°,
∴∠MPO+∠NPC=90°,
∵∠MPO+∠MOP=90°,
∴∠MOP=∠NPC,
∴(ASA);
(2)设长为,四边形的面积为,
∵AM=PM=APsin45°=m,
∴OM=1﹣m,
∴S=S矩OBNM﹣2S△POM=(1﹣m)﹣2×(1﹣m)·m
=m2﹣m+1(0<m<);
(3)△PBC可能为等腰三角形.
①当P与A重合时,PC=BC=1,此时P(0,1);
②当C在第四象限,且PB=CB时,有BN=PN=1﹣m,
∴BC=PN=PN=﹣m,
∴NC=BN+BC=1﹣m+﹣m,
由(1)可得:NC=PM=m,
∴1﹣m+﹣m=m,
解得m=1,
∴PM=,BN=1﹣,
∴P(,1﹣);
由题意可知PC=PB不成立,
则使△PBC成为等腰三角形的点P的坐标为(0,1)或(,1﹣).
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线和抛物线相交于点、(点在点的左侧),是抛物线上段的一点(点不与、重合),过点作轴的垂线交抛物线于点,以为边向右侧作正方形.设点的横坐标为,当正方形的四个顶点分别落在四个不同象限时,的取值范围是__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在矩形ABCD中,AC是对角线,点P为矩形外一点且满足AP=PC,AP⊥PC,PC交AD于点N,连接DP,过点P作PM⊥PD交AD于M.
(1)若AP=5,AB=BC,求矩形ABCD的面积;
(2)若CD=PM,试判断线段AC、AP、PN之间的关系,并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某课桌生产厂家研究发现,倾斜12°~24°的桌面有利于学生保持躯体自然姿势.根据这一研究,厂家决定将水平桌面做成可调节角度的桌面.新桌面的设计图如图1,AB可绕点A旋转,在点C处安装一根可旋转的支撑臂CD,AC=30 cm.
(1)如图2,当∠BAC=24°时,CD⊥AB,求支撑臂CD的长;
(2)如图3,当∠BAC=12°时,求AD的长.(结果保留根号)
(参考数据:sin 24°≈0.40,cos 24°≈0.91,tan 24°≈0.46,sin 12°≈0.20)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,AB=,E是AD边上的一点(点E与点A和点D不重合),BE的垂直平分线交AB于点M,交DC于点N.
(1)证明:MN = BE.
(2)设AE=,四边形ADNM的面积为S,写出S关于的函数关系式.
(3)当AE为何值时,四边形ADNM的面积最大?最大值是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明的书包里只放了A4大小的试卷共4张,其中语文1张、数学2张、英语1张
若随机地从书包中抽出2张,求抽出的试卷中有英语试卷的概率.
若随机地从书包中抽出3张,抽出的试卷中有英语试卷的概率为______
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,一艘轮船在近海处由西向东航行,点C处有一灯塔,灯塔附近30海里的圆形区域内有暗礁,轮船在A处测得灯塔在北偏东60°方向上,轮船又由A向东航行40海里到B处,测得灯塔在北偏东30°方向上.
(1)求轮船在B处时到灯塔C处的距离是多少?
(2)若轮船继续向东航行,有无触礁危险?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Q是弧AB与弦AB所围成的图形的内部的一定点,P是弦AB上一动点,连接PQ并延长交弧AB于点C,连接BC.已知AB=6cm,设A,P两点间的距离为xcm,P,C两点间的距离为y1cm,A,C两点间的距离为y2cm.
小明根据学习函数的经验,分别对函数y1,y2,随自变量x的变化而变化的规律进行了探究.
下面是小明的探究过程,请补充完整:
(1)确定自变量x的取值范围是 .
(2)按下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x的几组对应值.
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
y1/cm | 5.62 | 4.67 | 3.76 | 2.65 | 3.18 | 4.37 | |
y2/cm | 5.62 | 5.59 | 5.53 | 5.42 | 5.19 | 4.73 | 4.11 |
(3)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并面出函数y1,y2的图象.
(4)结合函数图象,解决问题:当△APC为等腰三角形时,AP的长度约为 cm.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com