【题目】如图,在正方形ABCD中,AB=,E是AD边上的一点(点E与点A和点D不重合),BE的垂直平分线交AB于点M,交DC于点N.
(1)证明:MN = BE.
(2)设AE=,四边形ADNM的面积为S,写出S关于的函数关系式.
(3)当AE为何值时,四边形ADNM的面积最大?最大值是多少?
【答案】(1)证明见解析;(2)S=-x2+x+2;(3)当AE =1时,四边形ADNM的面积S的值最大,最大值是.
【解析】
(1)作辅助线ME、MN,由SAS证明△EBA≌△MNF,从而得证;
(2)连接ME,构造出直角三角形△AME,在Rt△AME中,AE=x,ME=MB=2-AM,可得(2-AM)2=x2+AM2,解得AM,由(1)△EBA≌△MNF,可得EA=MF,由此DN=AF=AM+MF=AM+AE,即可求得四边形ADNM的面积为-x2+x+2;
(3)根据(2)的答案,利用二次函数的最值问题即可求出.
(1)设MN交BE于P,根据题意,得MN⊥BE,
过N作AB的垂线交AB于F,
在Rt△AEB和Rt△MNF中,
∠MBP+∠BMN=90°,∠FNM+∠BMN=90°,
∴∠MBP=∠MNF,
又AB=FN,
∴Rt△EBA≌Rt△MNF,故MN=BE;
(2)连接ME,
根据题意,得MB=ME,
在Rt△AME中,AE=x,ME=MB=2-AM,
∴(2-AM)2=x2+AM2,
解得AM=1-x2,
由(1)△EBA≌△MNF,
∴EA=MF,
∴DN=AF=AM+MF=AM+AE,
∴四边形ADNM的面积S=×AD=×2=2AM+AE=2(1-x2)+x=-x2+x+2,
即所求关系式为S=-x2+x+2;
(3)s=-x2+x+2=-(x2-2x+1)+=-(x-1)2+,
故当AE=x=1时,四边形ADNM的面积S的值最大,最大值是.
科目:初中数学 来源: 题型:
【题目】今年猪肉价格受非洲猪瘟疫情影响,有较大幅度的上升,为了解某地区养殖户受非洲猪瘟疫情感染受灾情况,现从该地区建档的养殖户中随机抽取了部分养殖户进行了调查(把调查结果分为四个等级:A级:非常严重;B级:严重;C级:一般;D级:没有感染),并将调查结果绘制成如下两幅不完整的统计图.请根据统计图中的信息解决下列问题:
(1)本次抽样调查的养殖户的总户数是 ;把图2条形统计图补充完整.
(2)若该地区建档的养殖户有1500户,求非常严重与严重的养殖户一共有多少户?
(3)某调研单位想从5户建档养殖户(分别记为a,b,c,d,e)中随机选取两户,进一步跟踪监测病毒传播情况,请用列表或画树状图的方法求出选中养殖户e的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知A(3,1),B(1,0),PQ是直线y=x上的一条动线段且PQ=(Q在P的下方),当AP+PQ+QB取最小值时,点Q坐标为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读理解:给定一个矩形,如果存在另一个矩形,它的周长和面积分别是已知矩形的周长和面积的2倍,则这个矩形是给定矩形的“加倍”矩形.如图,矩形是矩形的“加倍”矩形.
解决问题:
(1)当矩形的长和宽分别为3,2时,它是否存在“加倍”矩形?若存在,求出“加倍”矩形的长与宽,若不存在,请说明理由.
(2)边长为的正方形存在“加倍”正方形吗?请做出判断,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,以 为原点的直角坐标系中, 点的坐标为(0, 1),直线 交轴于点. 为线段上一动点,作直线,交直线于点. 过点作直线平行于轴,交轴于点 ,交直线于点.
(1)当点在第一象限时,求证:;
(2)当点在第一象限时,设长为,四边形的面积为,请求出与间的函数关系式,并写出自变量的取值范围;
(3)当点在线段上移动时,点也随之在直线上移动,是否可能成为等腰三角形?如果可能,求出所有能使成为等腰直角三角形的点的坐标;如果不可能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学习小组做“用频率估计概率的试验时,统计了某一结果出现的频率,绘制了如图所示折线统计图,则符合这一结果的试验最有可能的是( )
A. 掷一枚正六面体的骰子,出现1点朝上
B. 任意写一个整数,它能被2整除
C. 不透明袋中装有大小和质地都相同的1个红球和2个黄球,从中随机取一个,取到红球
D. 先后两次掷一枚质地均匀的硬币,两次都出现反面
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知点、,对连续作旋转变换依次得到三角形(1)、(2)、(3)、(4)、…,则第个三角形的直角顶点的坐标是______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,⊙O过正方形ABCD的顶点A、D且与边BC相切于点E,分别交AB、DC于点M、N.动点P在⊙O或正方形ABCD的边上以每秒一个单位的速度做连续匀速运动.设运动的时间为x,圆心O与P点的距离为y,图2记录了一段时间里y与x的函数关系,在这段时间里P点的运动路径为( )
A. 从D点出发,沿弧DA→弧AM→线段BM→线段BC
B. 从B点出发,沿线段BC→线段CN→弧ND→弧DA
C. 从A点出发,沿弧AM→线段BM→线段BC→线段CN
D. 从C点出发,沿线段CN→弧ND→弧DA→线段AB
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com