【题目】如图,已知A(3,1),B(1,0),PQ是直线y=x上的一条动线段且PQ=(Q在P的下方),当AP+PQ+QB取最小值时,点Q坐标为______.
【答案】(,
)
【解析】
作点B关于直线y=x的对称点B'(0,1),过点A作直线MN∥PQ,并沿MN把点A向下平移单位后得A'(2,0),连接A'B'交直线y=x于点Q,求出直线A'B'解析式,与y=x组成方程组,可求Q点坐标.
解:作点B关于直线y=x的对称点B'(0,1),过点A作直线MN∥PQ,并沿MN把点A向下平移单位后得A'(2,0),连接A'B'交直线y=x于点Q,如图,
∵AA'=PQ=,AA'∥PQ,
∴四边形APQA'是平行四边形.
∴AP=A'Q.
∵AP+PQ+QB=B'Q+A'Q+PQ且PQ=.
∴当A'Q+B'Q值最小时,AP+PQ+QB值最小.
根据两点之间线段最短,即A',Q,B'三点共线时A'Q+B'Q值最小.
∵B'(0,1),A'(2,0),
∴直线A'B'的解析式y=-x+1.
∴x=-x+1.即x=
,
∴Q点坐标(,
).
故答案是:(,
).
科目:初中数学 来源: 题型:
【题目】已知一次函数y=﹣x+2的图象,绕x轴上一点P(m,0)旋转180°,所得的图象经过(0.﹣1),则m的值为( )
A.﹣2B.﹣1C.1D.2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(12分)如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB于点D.点P从点D出发,沿线段DC向点C运动,点Q从点C出发,沿线段CA向点A运动,两点同时出发,速度都为每秒1个单位长度,当点P运动到C时,两点都停止.设运动时间为t秒.
(1)求线段CD的长;
(2)设△CPQ的面积为S,求S与t之间的函数关系式,并确定在运动过程中是否存在某一时刻t,使得S△CPQ∶S△ABC=9∶100?若存在,求出t的值;若不存在,说明理由;
(3)当t为何值时,△CPQ为等腰三角形?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图.在Rt△ABC中,∠ABC=90°,点D是斜边上的中点,点P在AB上,PE⊥BD于E,PF⊥AC于F,若AB=6,BC=3,则PE+PF=( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在矩形ABCD中,AC是对角线,点P为矩形外一点且满足AP=PC,AP⊥PC,PC交AD于点N,连接DP,过点P作PM⊥PD交AD于M.
(1)若AP=5,AB=BC,求矩形ABCD的面积;
(2)若CD=PM,试判断线段AC、AP、PN之间的关系,并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为配合全市“禁止焚烧秸秆”工作,某学校举行了“禁止焚烧秸秆,保护环境,从我做起”为主题的演讲比赛. 赛后组委会整理参赛同学的成绩,并制作了如下不完整的频数分布表和频数分布直方图,请根据图表提供的信息,解答下列问题:
分数段 (分数为x分) | 频数 | 百分比 |
60≤x<70 | 8 | 20% |
70≤x<80 | a | 30% |
80≤x<90 | 16 | b% |
90≤x<100 | 4 | 10% |
(1)表中的a= ,b= ;
(2)请补全频数分布直方图;
(3)若用扇形统计图来描述成绩分布情况,则分数段70≤x<80对应的圆心角的度数是 ;
(4)竞赛成绩不低于90分的4名同学中正好有2名男同学,2名女同学.学校从这4名同学中随机抽取2名同学接受电视台记者采访,请用列表或画树状图的方法求正好抽到一名男同学和一名女同学的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,AB=,E是AD边上的一点(点E与点A和点D不重合),BE的垂直平分线交AB于点M,交DC于点N.
(1)证明:MN = BE.
(2)设AE=,四边形ADNM的面积为S,写出S关于
的函数关系式.
(3)当AE为何值时,四边形ADNM的面积最大?最大值是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知⊙O是△ABC的外接圆,AB是⊙O的直径,点D是AB延长线上的一点,AE⊥DC交DC的延长线于点E,AC平分∠DAE.
(1)DE与⊙O有何位置关系?请说明理由.
(2)若AB=6,CD=4,求CE的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com