分析 (Ⅰ)在Rt△ACD中,根据勾股定理可求CD,根据中点的定义可求BC,再在Rt△ACB中,根据勾股定理可求AB;
(Ⅱ)先根据平行四边形的判定得到四边形ACED是平行四边形,可求DE,CE,再根据三角形面积公式可求点D到CE的距离.
解答 解:(Ⅰ)在Rt△ACD中,CD=$\sqrt{A{D}^{2}-A{C}^{2}}$=2$\sqrt{3}$,
∵D是BC的中点,
∴BC=2CD=4$\sqrt{3}$,
在Rt△ACB中,AB=$\sqrt{A{C}^{2}+B{C}^{2}}$=2$\sqrt{13}$;
(Ⅱ)∵∠ACB=90°,DE⊥BC,
∴AC∥DE,
∵CE∥AD,
∴四边形ACED是平行四边形,
∴DE=AC=2,CE=AD=4,
∴点D到CE的距离为2$\sqrt{3}$×2÷2×2÷4=$\sqrt{3}$.
点评 此题考查了勾股定理,平行四边形的判定与性质,关键是熟练掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.
科目:初中数学 来源: 题型:选择题
| A. | 4 | B. | 2 | C. | 2-$\sqrt{3}$ | D. | 4-2$\sqrt{3}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
| 分组 | 阅读课外书籍时间n(小时) | 人数 |
| A | 0≤n<3 | 3 |
| B | 3≤n<6 | 10 |
| C | 6≤n<9 | a |
| D | 9≤n<12 | 13 |
| E | 12≤n<15 | b |
| F | 15≤n<18 | c |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com