精英家教网 > 初中数学 > 题目详情
12.如图:已知AB∥CD,∠ABE与∠CDE两个角的角平分线相交于F.
(1)如图1,若∠E=80°,求∠BFD的度数.
(2)如图2:若∠ABM=$\frac{1}{3}$∠ABF,∠CDM=$\frac{1}{3}$∠CDF,写出∠M和∠E之间的数量关系并证明你的结论.

分析 (1)首先作EG∥AB,FH∥AB,利用平行线的性质可得∠ABE+∠CDE=280°,再利用角平分线的定义得到∠ABF+∠CDF=140°,从而得到∠BFD的度数;
(2)先由已知得到∠ABE=6∠ABM,∠CDE=6∠CDM,由(1)得∠ABE+∠CDE=360°-∠E,∠M=∠ABM+∠CDM,等量代换,即可.

解答 解:(1)如图1,作EG∥AB,FH∥AB,
∵AB∥CD,
∴EG∥AB∥FH∥CD,
∴∠ABF=∠BFH,∠CDF=∠DFH,∠ABE+∠BEG=180°,∠GED+∠CDE=180°,
∴∠ABE+∠BEG+∠GED+∠CDE=360°
∵∠BED=∠BEG+∠DEG=80°,
∴∠ABE+∠CDE=280°,
∵∠ABF和∠CDF的角平分线相交于E,
∴∠ABF+∠CDF=140°,
∴∠BFD=∠BFH+∠DFH=140°;

(2)∵∠ABM=$\frac{1}{3}$∠ABF,∠CDM=$\frac{1}{3}$∠CDF,
∴∠ABF=3∠ABM,∠CDF=3∠CDM,
∵∠ABE与∠CDE两个角的角平分线相交于点F,
∴∠ABE=6∠ABM,∠CDE=6∠CDM,
∴6∠ABM+6∠CDM+∠E=360°,
∵∠M=∠ABM+∠CDM,
∴6∠M+∠E=360°.

点评 本题主要考查了平行线的性质和四边形的内角和,关键在于掌握两直线平行同位角相等,内错角相等,同旁内角互补的性质.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

20.在下列图形中,是轴对称图形的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图1,四边形ABCD中,AB∥CD,AB=a,CD=b(a≠b),点E、F分别是AD、BC上的点,且EF∥AB,设EF到CD、AB的距离分别为d1、d2
[初步尝试]
小亮同学在对这一图形进行研究时,发现如下事实:
(1)当$\frac{{d}_{1}}{{d}_{2}}$=$\frac{1}{1}$时,有EF=$\frac{a+b}{2}$;
(2)当$\frac{{d}_{1}}{{d}_{2}}$=$\frac{1}{2}$时,有EF=$\frac{a+2b}{3}$.
该同学思考研究(2)的过程如下:
作DG∥BC,交AB于G,作DM⊥AB于点M,交EF于点N.
显然HF=CD=b,AG=AB-CD=a-b.
易证,△DEH∽△DAG,可得$\frac{DN}{DM}$=$\frac{EH}{AG}$,
即,$\frac{{d}_{1}}{{d}_{1}{+d}_{2}}$=$\frac{EH}{a-b}$
而由$\frac{{d}_{1}}{{d}_{2}}$=$\frac{1}{2}$,得$\frac{{d}_{1}}{{d}_{1}{+d}_{2}}$=$\frac{1}{1+2}$=$\frac{1}{3}$,
代入上式,则$\frac{1}{3}$=$\frac{EH}{a-b}$.
解得EH=$\frac{1}{3}$(a-b)
∴EF=EH+HF=b+$\frac{1}{3}$(a-b)=$\frac{a+2b}{3}$
[类比发现]
沿用上述图形和已知条件,请自主完成进一步的研究发现:
当$\frac{{d}_{1}}{{d}_{2}}$=$\frac{2}{1}$时,EF=$\frac{2a+b}{3}$;
当$\frac{{d}_{1}}{{d}_{2}}$=$\frac{3}{1}$时,EF=$\frac{3a+b}{4}$;
当$\frac{{d}_{1}}{{d}_{2}}$=$\frac{1}{n}$时,EF=$\frac{a+nb}{n+1}$;
当$\frac{{d}_{1}}{{d}_{2}}$=$\frac{m}{1}$时,EF=$\frac{ma+b}{m+1}$.(其中m、n均为正整数,下同)
[推广证明]
当$\frac{{d}_{1}}{{d}_{2}}$=$\frac{m}{n}$时,EF=$\frac{ma+nb}{m+n}$;
请证明你的结论.
[实际应用]
请结合所给情景,创设一个需要采用下面的全部信息求解的问题.
[情景]
如图2,有一块四边形耕地ABCD,AD∥BC,AD=100米,BC=300米,AB=500米,在AB上取点E,使AE=200米,以点E处为起点开挖平行于两底的水渠EF,与CD边相交于点F.
[问题]
水渠EF的长为多少米?(提问即可,不必求解)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,点O在∠APB的平分线上,⊙O与PA相切于点C.
(1)求证:直线PB与⊙O相切;
(2)PO的延长线与⊙O交于点E,若⊙O的半径为15,PC=20,求弦CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,在平面直角坐标系xoy中,矩形ABCD的边AB在x轴上,且AB=3,BC=2$\sqrt{3}$,直线y=$\sqrt{3}$x-2$\sqrt{3}$经过点C,交y轴于点G.
(1)求C,D坐标;
(2)已知抛物线顶点y=$\sqrt{3}$x-2$\sqrt{3}$上,且经过C,D,若抛物线与y交于点M连接MC,设点Q是线段下方此抛物线上一点,当点Q运动到什么位置时,△MCQ的面积最大?求出此时点Q的坐标和面积的最大值.
(3)将(2)中抛物线沿直线y=$\sqrt{3}$x-2$\sqrt{3}$平移,平移后的抛物线交y轴于点F,顶点为点E(顶点在y轴右侧).平移后是否存在这样的抛物线,使△EFG为等腰三角形?若存在,请求出此时抛物线的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.如图,将一幅三角尺叠放在一起,使直角顶点重合于点O,绕点O任意转动其中一个三角尺,则与∠AOD始终相等的角是(  )
A.∠BODB.∠ABOC.∠BOCD.∠BAO

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.化简求值:(x-y)2+(x-y)(x+3y),其中x=1,y=-1.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.下列四组线段中,不能构成直角三角形的是(  )
A.4,5,6B.3,4,5C.5,12,13D.7,24,25

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.在△ABC中,AB=13,BC=12,CA=5,M是AB中点,点D与C在AB同侧,使DA=DB=7,则△CDM的面积为$\frac{357\sqrt{3}}{104}$.

查看答案和解析>>

同步练习册答案