·ÖÎö £¨1£©°ÑA£¨-1£¬4£©´úÈëy=x2+bxÇó³öb£¬ÔÙ°ÑB£¨a£¬0£©´úÈëÅ×ÎïÏߵĽâÎöʽ¼´¿É½â¾öÎÊÌ⣮
£¨2£©Èçͼ1ÖУ¬×÷MG¡ÎyÖá½»ABÓÚG£®ÉèM£¨x£¬x2-3x£©£¬ÔòG£¨m£¬-m+3£©£¬¸ù¾ÝS¡÷ABM=S¡÷AMG+S¡÷BMG¹¹½¨¶þ´Îº¯Êý£¬ÀûÓöþ´Îº¯ÊýµÄÐÔÖʽâ¾öÎÊÌ⣮
£¨3£©·ÖÈýÖÖÇéÐ΢ÙÈçͼ2ÖУ¬Á¬½ÓAE£®Ö»ÒªÖ¤Ã÷ËıßÐÎAPCEÊÇÆ½ÐÐËıßÐΣ¬¼´¿É½â¾öÎÊÌ⣮¢ÚÈçͼ3ÖУ¬µ±PB=BCʱ£¬¢ÛÈçͼ4ÖУ¬µ±PÓëMÖØºÏʱ£¬Ò×Ö¤ËıßÐÎAEPCÊÇÆ½ÐÐËıßÐΣ¬¡÷EPCÓë¡÷APCÖØµþ²¿·ÖµÄÃæ»ýÊÇ¡÷ABPµÄÃæ»ýµÄ$\frac{1}{4}$£¬¢ÛÈçͼ4ÖУ¬µ±PÓëMÖØºÏʱ£¬Ò×Ö¤ËıßÐÎAEPCÊÇÆ½ÐÐËıßÐΣ¬¡÷EPCÓë¡÷APCÖØµþ²¿·ÖµÄÃæ»ýÊÇ¡÷ABPµÄÃæ»ýµÄ$\frac{1}{4}$£¬·Ö±ðÇó½â¼´¿É£®
½â´ð ½â£º£¨1£©°ÑA£¨-1£¬4£©´úÈëy=x2+bxµÃµ½4=1-b£¬
¡àb=-3£¬
¡ày=x2-3x£¬
¡ßB£¨a£¬0£©ÔÚº¯ÊýͼÏóÉÏ£¬
¡àa2-3a=0£¬
¡àa=3»ò0£¨ÉáÆú£©£¬
¡àa=3£®
£¨2£©Èçͼ1ÖУ¬×÷MG¡ÎyÖá½»ABÓÚG£®![]()
ÉèÖ±ÏßAB½âÎöʽΪy=kx+b£¬°Ñ£¨-1£¬4£©£¬£¨3£¬0£©´úÈëµÃ$\left\{\begin{array}{l}{-k+b=4}\\{3k+b=0}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{k=-1}\\{b=3}\end{array}\right.$£¬
¡ày=-x+3£¬ÉèM£¨x£¬x2-3x£©£¬ÔòG£¨m£¬-m+3£©£¬
¡àS¡÷ABM=S¡÷AMG+S¡÷BMG=$\frac{1}{2}$¡Á4¡Á[£¨-x+3£©-£¨x2-3x£©=-2x2+4x+6=-2£¨x-1£©2+8£¬
¡ß-2£¼0£¬
¡àµ±x=1ʱ£¬¡÷ABMµÄÃæ»ý×î´ó£¬×î´óֵΪ8£¬
´ËʱM£¨1£¬-2£©£®
£¨3£©¢ÙÈçͼ2ÖУ¬Á¬½ÓAE£®![]()
¡ßCΪABÖе㣬¡÷EPCÓë¡÷APCÖØµþ²¿·ÖµÄÃæ»ýÊÇ¡÷ABPµÄÃæ»ýµÄ$\frac{1}{4}$£¬
¡àFΪACÓëEPµÄÖе㣬Á¬½ÓAE£¬
¡àËıßÐÎAPCEÊÇÆ½ÐÐËıßÐΣ¬
¡àAP=EC=BC=$\frac{1}{2}$AB=2$\sqrt{2}$£®
¢ÚÈçͼ3ÖУ¬µ±PB=BCʱ£¬![]()
¡ßPB=BC=EC=PE£¬
¡àËıßÐÎBCEPÊÇÁâÐΣ¬
¡àPE¡ÎBC£¬¡ßPE=AC£¬
¡àËıßÐÎAEPCÊÇÆ½ÐÐËıßÐΣ¬´Ëʱ¡÷EPCÓë¡÷APCÖØµþ²¿·ÖµÄÃæ»ýÊÇ¡÷ABPµÄÃæ»ýµÄ$\frac{1}{4}$£¬
×÷BK¡ÍPMÓÚK£¬
¡ßAB=4$\sqrt{2}$£¬BM=2$\sqrt{2}$£¬AM=2$\sqrt{10}$£¬
¡àAM2=AB2+BM2£¬
¡à¡ÏABM=90¡ã£¬
¡à$\frac{1}{2}$•BM•AB=$\frac{1}{2}$•AM•BK£¬
¡àBK=$\frac{BM•AB}{AM}$=$\frac{2\sqrt{2}•4\sqrt{2}}{2\sqrt{10}}$=$\frac{4}{5}$$\sqrt{10}$£¬
¡ßPB=BM=2$\sqrt{2}$£¬
¡àPK=KM=$\sqrt{B{M}^{2}-B{K}^{2}}$=$\frac{2}{5}$$\sqrt{10}$£¬
¡àAK=$\sqrt{A{B}^{2}-B{K}^{2}}$=$\frac{8}{5}$$\sqrt{10}$£¬
¡àAP=AK=PK=$\frac{8}{5}$$\sqrt{10}$-$\frac{2}{5}$$\sqrt{10}$=$\frac{6}{5}$$\sqrt{10}$£®
¢ÛÈçͼ4ÖУ¬µ±PÓëMÖØºÏʱ£¬Ò×Ö¤ËıßÐÎAEPCÊÇÆ½ÐÐËıßÐΣ¬¡÷EPCÓë¡÷APCÖØµþ²¿·ÖµÄÃæ»ýÊÇ¡÷ABPµÄÃæ»ýµÄ$\frac{1}{4}$£¬´ËʱAP=AM=2$\sqrt{10}$£®![]()
×ÛÉÏËùÊö£¬µ±AP=2$\sqrt{2}$»ò$\frac{6}{5}$$\sqrt{10}$»ò2$\sqrt{10}$ʱ£¬¡÷EPCÓë¡÷APCÖØµþ²¿·ÖµÄÃæ»ýÊÇ¡÷ABPµÄÃæ»ýµÄ$\frac{1}{4}$£®
µãÆÀ ±¾Ì⿼²é¶þ´Îº¯Êý×ÛºÏÌâ¡¢Ò»´Îº¯Êý¡¢Æ½ÐÐËıßÐεÄÅж¨ºÍÐÔÖʵÈ֪ʶ£¬½âÌâµÄ¹Ø¼üÊÇÁé»îÔËÓÃÕâЩ֪ʶ½â¾öÎÊÌ⣬ѧ»á¹¹½¨¶þ´Îº¯Êý½â¾ö×îÖµÎÊÌ⣬עÒâ²»ÄÜ©½â£¬ÊôÓÚÖп¼Ñ¹ÖáÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\left\{\begin{array}{l}{{x}_{1}=-5}\\{{y}_{1}=2}\end{array}\right.$ $\left\{\begin{array}{l}{{x}_{2}=2}\\{{y}_{2}=-5}\end{array}\right.$ | B£® | $\left\{\begin{array}{l}{{x}_{1}=5}\\{{y}_{1}=2}\end{array}\right.$ $\left\{\begin{array}{l}{{x}_{2}=2}\\{{y}_{2}=5}\end{array}\right.$ | ||
| C£® | $\left\{\begin{array}{l}{{x}_{1}=5}\\{{y}_{1}=-2}\end{array}\right.$ $\left\{\begin{array}{l}{{x}_{2}=-2}\\{{y}_{2}=5}\end{array}\right.$ | D£® | $\left\{\begin{array}{l}{{x}_{1}=-5}\\{{y}_{1}=-2}\end{array}\right.$ $\left\{\begin{array}{l}{{x}_{2}=-2}\\{{y}_{2}=-5}\end{array}\right.$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\sqrt{3}+1$ | B£® | $\sqrt{2}+1$ | C£® | $\sqrt{2}$ | D£® | $\sqrt{2}-1$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com