5£®ÒÑÖªÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬OÎª×ø±êÔ­µã£¬¶þ´Îº¯Êýy=x2+bxµÄͼÏó¾­¹ýµãA£¨-1£¬4£©£¬½»xÖáÓÚµãB£¨a£¬0£©£®
£¨1£©ÇóaÓëbµÄÖµ£»
£¨2£©Èçͼ1£¬µãMΪÅ×ÎïÏßÉϵÄÒ»¸ö¶¯µã£¬ÇÒÔÚÖ±ÏßABÏ·½£¬ÊÔÇó³ö¡÷ABMÃæ»ýµÄ×î´óÖµ¼°´ËʱµãMµÄ×ø±ê£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬µãCΪABµÄÖе㣬µãPÊÇÏß¶ÎAMÉϵ͝µã£¬Èçͼ2Ëùʾ£¬ÎÊAPΪºÎֵʱ£¬½«¡÷BPCÑØ±ßPC·­ÕÛºóµÃµ½¡÷EPC£¬Ê¹¡÷EPCÓë¡÷APCÖØµþ²¿·ÖµÄÃæ»ýÊÇ¡÷ABPµÄÃæ»ýµÄ$\frac{1}{4}$£®

·ÖÎö £¨1£©°ÑA£¨-1£¬4£©´úÈëy=x2+bxÇó³öb£¬ÔÙ°ÑB£¨a£¬0£©´úÈëÅ×ÎïÏߵĽâÎöʽ¼´¿É½â¾öÎÊÌ⣮
£¨2£©Èçͼ1ÖУ¬×÷MG¡ÎyÖá½»ABÓÚG£®ÉèM£¨x£¬x2-3x£©£¬ÔòG£¨m£¬-m+3£©£¬¸ù¾ÝS¡÷ABM=S¡÷AMG+S¡÷BMG¹¹½¨¶þ´Îº¯Êý£¬ÀûÓöþ´Îº¯ÊýµÄÐÔÖʽâ¾öÎÊÌ⣮
£¨3£©·ÖÈýÖÖÇéÐ΢ÙÈçͼ2ÖУ¬Á¬½ÓAE£®Ö»ÒªÖ¤Ã÷ËıßÐÎAPCEÊÇÆ½ÐÐËıßÐΣ¬¼´¿É½â¾öÎÊÌ⣮¢ÚÈçͼ3ÖУ¬µ±PB=BCʱ£¬¢ÛÈçͼ4ÖУ¬µ±PÓëMÖØºÏʱ£¬Ò×Ö¤ËıßÐÎAEPCÊÇÆ½ÐÐËıßÐΣ¬¡÷EPCÓë¡÷APCÖØµþ²¿·ÖµÄÃæ»ýÊÇ¡÷ABPµÄÃæ»ýµÄ$\frac{1}{4}$£¬¢ÛÈçͼ4ÖУ¬µ±PÓëMÖØºÏʱ£¬Ò×Ö¤ËıßÐÎAEPCÊÇÆ½ÐÐËıßÐΣ¬¡÷EPCÓë¡÷APCÖØµþ²¿·ÖµÄÃæ»ýÊÇ¡÷ABPµÄÃæ»ýµÄ$\frac{1}{4}$£¬·Ö±ðÇó½â¼´¿É£®

½â´ð ½â£º£¨1£©°ÑA£¨-1£¬4£©´úÈëy=x2+bxµÃµ½4=1-b£¬
¡àb=-3£¬
¡ày=x2-3x£¬
¡ßB£¨a£¬0£©ÔÚº¯ÊýͼÏóÉÏ£¬
¡àa2-3a=0£¬
¡àa=3»ò0£¨ÉáÆú£©£¬
¡àa=3£®

£¨2£©Èçͼ1ÖУ¬×÷MG¡ÎyÖá½»ABÓÚG£®

ÉèÖ±ÏßAB½âÎöʽΪy=kx+b£¬°Ñ£¨-1£¬4£©£¬£¨3£¬0£©´úÈëµÃ$\left\{\begin{array}{l}{-k+b=4}\\{3k+b=0}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{k=-1}\\{b=3}\end{array}\right.$£¬
¡ày=-x+3£¬ÉèM£¨x£¬x2-3x£©£¬ÔòG£¨m£¬-m+3£©£¬
¡àS¡÷ABM=S¡÷AMG+S¡÷BMG=$\frac{1}{2}$¡Á4¡Á[£¨-x+3£©-£¨x2-3x£©=-2x2+4x+6=-2£¨x-1£©2+8£¬
¡ß-2£¼0£¬
¡àµ±x=1ʱ£¬¡÷ABMµÄÃæ»ý×î´ó£¬×î´óֵΪ8£¬
´ËʱM£¨1£¬-2£©£®

£¨3£©¢ÙÈçͼ2ÖУ¬Á¬½ÓAE£®

¡ßCΪABÖе㣬¡÷EPCÓë¡÷APCÖØµþ²¿·ÖµÄÃæ»ýÊÇ¡÷ABPµÄÃæ»ýµÄ$\frac{1}{4}$£¬
¡àFΪACÓëEPµÄÖе㣬Á¬½ÓAE£¬
¡àËıßÐÎAPCEÊÇÆ½ÐÐËıßÐΣ¬
¡àAP=EC=BC=$\frac{1}{2}$AB=2$\sqrt{2}$£®
¢ÚÈçͼ3ÖУ¬µ±PB=BCʱ£¬

¡ßPB=BC=EC=PE£¬
¡àËıßÐÎBCEPÊÇÁâÐΣ¬
¡àPE¡ÎBC£¬¡ßPE=AC£¬
¡àËıßÐÎAEPCÊÇÆ½ÐÐËıßÐΣ¬´Ëʱ¡÷EPCÓë¡÷APCÖØµþ²¿·ÖµÄÃæ»ýÊÇ¡÷ABPµÄÃæ»ýµÄ$\frac{1}{4}$£¬
×÷BK¡ÍPMÓÚK£¬
¡ßAB=4$\sqrt{2}$£¬BM=2$\sqrt{2}$£¬AM=2$\sqrt{10}$£¬
¡àAM2=AB2+BM2£¬
¡à¡ÏABM=90¡ã£¬
¡à$\frac{1}{2}$•BM•AB=$\frac{1}{2}$•AM•BK£¬
¡àBK=$\frac{BM•AB}{AM}$=$\frac{2\sqrt{2}•4\sqrt{2}}{2\sqrt{10}}$=$\frac{4}{5}$$\sqrt{10}$£¬
¡ßPB=BM=2$\sqrt{2}$£¬
¡àPK=KM=$\sqrt{B{M}^{2}-B{K}^{2}}$=$\frac{2}{5}$$\sqrt{10}$£¬
¡àAK=$\sqrt{A{B}^{2}-B{K}^{2}}$=$\frac{8}{5}$$\sqrt{10}$£¬
¡àAP=AK=PK=$\frac{8}{5}$$\sqrt{10}$-$\frac{2}{5}$$\sqrt{10}$=$\frac{6}{5}$$\sqrt{10}$£®
¢ÛÈçͼ4ÖУ¬µ±PÓëMÖØºÏʱ£¬Ò×Ö¤ËıßÐÎAEPCÊÇÆ½ÐÐËıßÐΣ¬¡÷EPCÓë¡÷APCÖØµþ²¿·ÖµÄÃæ»ýÊÇ¡÷ABPµÄÃæ»ýµÄ$\frac{1}{4}$£¬´ËʱAP=AM=2$\sqrt{10}$£®


×ÛÉÏËùÊö£¬µ±AP=2$\sqrt{2}$»ò$\frac{6}{5}$$\sqrt{10}$»ò2$\sqrt{10}$ʱ£¬¡÷EPCÓë¡÷APCÖØµþ²¿·ÖµÄÃæ»ýÊÇ¡÷ABPµÄÃæ»ýµÄ$\frac{1}{4}$£®

µãÆÀ ±¾Ì⿼²é¶þ´Îº¯Êý×ÛºÏÌâ¡¢Ò»´Îº¯Êý¡¢Æ½ÐÐËıßÐεÄÅж¨ºÍÐÔÖʵÈ֪ʶ£¬½âÌâµÄ¹Ø¼üÊÇÁé»îÔËÓÃÕâЩ֪ʶ½â¾öÎÊÌ⣬ѧ»á¹¹½¨¶þ´Îº¯Êý½â¾ö×îÖµÎÊÌ⣬עÒâ²»ÄÜ©½â£¬ÊôÓÚÖп¼Ñ¹ÖáÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®Èçͼ£¬ÔÚ¾ØÐÎABCDÖУ¬AD=2£¬CD=4£¬BN=2AM=2MN£»µãPΪCDÉϵÄÒ»¶¯µã£¨²»ÓëC¡¢DÖØºÏ£©£¬AP½»DMÓÚµãE£¬PN½»CMÓÚµãF£¬ÉèDP=x£®
£¨1£©ÊÔÓú¬xµÄʽ×Ó±íʾ£ºAE£ºAPµÄ±ÈÖµ£®
£¨2£©ÇëÓú¬xµÄʽ×Ó±íʾ£º¡÷AMEµÄÃæ»ý£®
£¨3£©µ±DPΪºÎֵʱ£¬ËıßÐÎPEMFµÄÃæ»ýÊǾØÐÎABCDÃæ»ýµÄ$\frac{5}{32}$£¬²¢ÅжϴËʱËıßÐÎDMNPµÄÐÎ×´£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®¶þÔª¶þ´Î·½³Ì×é$\left\{\begin{array}{l}{x+y=3}\\{xy=-10}\end{array}\right.$µÄ½âÊÇ£¨¡¡¡¡£©
A£®$\left\{\begin{array}{l}{{x}_{1}=-5}\\{{y}_{1}=2}\end{array}\right.$   $\left\{\begin{array}{l}{{x}_{2}=2}\\{{y}_{2}=-5}\end{array}\right.$B£®$\left\{\begin{array}{l}{{x}_{1}=5}\\{{y}_{1}=2}\end{array}\right.$   $\left\{\begin{array}{l}{{x}_{2}=2}\\{{y}_{2}=5}\end{array}\right.$
C£®$\left\{\begin{array}{l}{{x}_{1}=5}\\{{y}_{1}=-2}\end{array}\right.$   $\left\{\begin{array}{l}{{x}_{2}=-2}\\{{y}_{2}=5}\end{array}\right.$D£®$\left\{\begin{array}{l}{{x}_{1}=-5}\\{{y}_{1}=-2}\end{array}\right.$   $\left\{\begin{array}{l}{{x}_{2}=-2}\\{{y}_{2}=-5}\end{array}\right.$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÈôµÈÑüÖ±½ÇÈý½ÇÐεÄÄÚÇÐÔ²°ë¾¶µÄ³¤Îª1£¬ÔòÆäÍâ½ÓÔ²°ë¾¶µÄ³¤Îª£¨¡¡¡¡£©
A£®$\sqrt{3}+1$B£®$\sqrt{2}+1$C£®$\sqrt{2}$D£®$\sqrt{2}-1$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®Èçͼ£¬µãPÊÇÁâÐÎABCD¶Ô½ÇÏßACÉϵÄÒ»µã£¬Á¬½ÓDP²¢ÑÓ³¤DP½»±ßABÓÚµãE£¬Á¬½ÓBP²¢ÑÓ³¤½»±ßADÓÚµãF£¬½»CDµÄÑÓ³¤ÏßÓÚµãG£®
£¨1£©ÇóÖ¤£º¡÷ABP¡Õ¡÷ADP£»
£¨2£©ÒÑÖªFA=2DF£¬DP=6£¬ÇóPG£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®Á½¸öµÈÑüÖ±½Ç¡÷ABCºÍ¡÷DEF£¬AC=BC£¬AC¡ÍBC£¬DE¡ÍDF£¬DE=DF£®
£¨1£©Èçͼ¢Ù£¬µãCÓëDÖØºÏʱ£¬ÇóÖ¤£ºAF=BE£¬AF¡ÍBE£®
£¨2£©Èçͼ¢Úµ±BµãÓëFµãÖØºÏʱ£¬Á¬AE¡¢CDÏཻÓÚµãP£¬½«¡÷CBDÈÆCµã˳ʱÕëÐýת90¡ã£¬»­³öͼÐΣ¬²¢Ì½¾¿AEÓëCDÖ®¼äÊý¹ØÏµ£¬²¢Ö¤Ã÷£®
£¨3£©ÔÚͼ¢ÚÖУ¬Èô¡ÏCBE=15¡ã£¬AC=4£¬DE=3£¬ÔòAE=$\sqrt{26}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÏÈ»¯¼ò£¬ÔÙÇóÖµ£º8x2-2£¨x+4£©£¨2x-1£©-3x£¨$\frac{4}{3}$x-5£©£¬ÆäÖÐx=-2015£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÒÑÖªÓÐÀíÊýa£¬b¶ÔÓ¦µÄµãÔÚÊýÖáÉϵÄλÖÃÈçͼËùʾ£¬»¯¼ò£º|a-b|-2|a+1|-|b+1|£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ËıßÐÎABCDÊÇÆ½ÐÐËıßÐΣ¬A£¬B£¬CµÄ×ø±ê·Ö±ðΪA£¨1£¬2£©£¬B£¨-4£¬2£©£¬C£¨-2£¬-4£©£¬Çó³öµÚËĸöµãDµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸