精英家教网 > 初中数学 > 题目详情

【题目】如图,在ABCAB=AC,以AB为直径的⊙O分别交ACBC于点DE,点FAC的延长线上,且∠CBF=CAB

1)求证:直线BF是⊙O的切线;

2)若AB=5sinCBF=,求BCBF的长.

【答案】(1)证明见解析;(2).

【解析】试题分析:(1)连接AE,利用直径所对的圆周角是直角,从而判定直角三角形,利用直角三角形两锐角相等得到直角,从而证明∠ABF=90°.

(2)利用已知条件证得△AGC∽△ABF,利用比例式求得线段的长即可.

试题解析:(1)证明:连接AE,

∵AB是⊙O的直径,

∴∠AEB=90°,

∴∠1+∠2=90°.

∵AB=AC,

∴∠1=∠CAB.

∵∠CBF=∠CAB,

∴∠1=∠CBF

∴∠CBF+∠2=90°

即∠ABF=90°

∵AB是⊙O的直径,

∴直线BF是⊙O的切线.

(2)过点C作CG⊥AB于G.

∵sin∠CBF=,∠1=∠CBF,

∴sin∠1=

∵在Rt△AEB中,∠AEB=90°,AB=5,

∴BE=ABsin∠1=

∵AB=AC,∠AEB=90°,

∴BC=2BE=2

在Rt△ABE中,由勾股定理得AE=

∴sin∠2=,cos∠2=

在Rt△CBG中,可求得GC=4,GB=2,

∴AG=3,

∵GC∥BF,

∴△AGC∽△ABF,

∴BF= .

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】函数y=x﹣2的图象不经过(
A.第一象限
B.第二象限
C.第三象限
D.第四象限

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,已知△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点.作正方形DEFG,使点A,C分别在DG、DE上,连接AE、BG.
(1)试猜想线段BG和AE的数量关系,请直接写出你得到的结论;
(2)将正方形DEFG绕点D逆时针方向旋转一定角度后(旋转角度大于0°,小于或等于360°),如图②,(1)中的结论是否仍然成立?如果成立,请予以证明;如果不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】n边形每个内角的大小都为108°,则n=( )

A. 5B. 6C. 7D. 8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若一元二次方程x2+bx+50配方后为(x42k,则k的值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,反比例函数y= 的图像与一次函数y=x+b的图像交于点 A(1,4)、点B(﹣4,n).
(1)求一次函数和反比例函数的解析式;
(2)若 A1(x1 , y1),A2(x2 , y2),A3(x3 , y3)为双曲线上的三个点,且x1<x2<0<x3 , 请直接写出y1、y2、y3大小关系;
(3)求△OAB的面枳;
(4)直接写出一次函数值大于反比例函数值的自变置x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】先化简,再求值:2(3a2b﹣ab2)﹣(﹣3ab2+2a2b),其中a=﹣1,b=2.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知四边形ABCD是平行四边形,下列结论中不正确的是(
A.当AB=BC时,它是菱形
B.当AC⊥BD时,它是菱形
C.当∠ABC=90°时,它是矩形
D.当AC=BD时,它是正方形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于一元二次方程x22x10,根的判别式b24ac中的b表示的数是(

A.2B.2C.1D.1

查看答案和解析>>

同步练习册答案