精英家教网 > 初中数学 > 题目详情

【题目】如图①,已知△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点.作正方形DEFG,使点A,C分别在DG、DE上,连接AE、BG.
(1)试猜想线段BG和AE的数量关系,请直接写出你得到的结论;
(2)将正方形DEFG绕点D逆时针方向旋转一定角度后(旋转角度大于0°,小于或等于360°),如图②,(1)中的结论是否仍然成立?如果成立,请予以证明;如果不成立,请说明理由.

【答案】
(1)解:BG=AE.理由如下:

如图①,∵△ABC是等腰直角三角形,∠BAC=90°,

点D是BC的中点,

∴BD=CD=AD,

∵在△BDG和△ADE中,

∴△BDG≌△ADE(SAS),

∴BG=AE


(2)解:证明:连接AD,

∵Rt△BAC中,D为斜边BC的中点,

∴AD=BD,AD⊥BC,

∴∠ADG+∠GDB=90°,

∵EFGD为正方形,

∴DE=DG,且∠GDE=90°,

∴∠ADG+∠ADE=90°,

∴∠BDG=∠ADE,

在△BDG和△ADE中,

∴△BDG≌△ADE(SAS),

∴BG=AE.


【解析】(1)在Rt△BDG与Rt△EDA;根据边角边定理易得Rt△BDG≌Rt△EDA;故BG=AE;(2)连接AD,根据直角三角形与正方形的性质可得Rt△BDG≌Rt△EDA;进而可得BG=AE.
【考点精析】解答此题的关键在于理解正方形的性质的相关知识,掌握正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】分解因式:a2﹣4=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲数比乙数的2倍大3,若乙数为x,则甲数为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】分解因式(x﹣1)2﹣2(x﹣1)+1的结果是( )
A.(x﹣1)(x﹣2)
B.x2
C.(x+1)2
D.(x﹣2)2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某地电话拨号入网有两种收费方式,用户可以任选其一:

A)计时制:0.05/分;

B)包月制:50/月(限一部个人住宅电话上网).

此外,每一种上网方式都得加收通信费0.02/分.

1)某用户某月上网的时间为分,请你用含的代数式分别写出两种收费方式下该用户应该支付的费用;

2)如果某用户一个月内上网的时间为20小时,你认为采用哪种方式较为合算?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若关于a,b的多项式3(a2﹣2ab﹣b2)﹣(a2+mab+2b2)中不含有ab项,则m=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCAB=AC,以AB为直径的⊙O分别交ACBC于点DE,点FAC的延长线上,且∠CBF=CAB

1)求证:直线BF是⊙O的切线;

2)若AB=5sinCBF=,求BCBF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有两个事件,事件A:367人中至少有2人生日相同;事件B:抛掷一枚均匀的骰子,朝上的面点数为偶数.下列说法正确的是(
A.事件A、B都是随机事件
B.事件A、B都是必然事件
C.事件A是随机事件,事件B是必然事件
D.事件A是必然事件,事件B是随机事件

查看答案和解析>>

同步练习册答案