【题目】已知关于x的分式方程①和一元二次方程②中,m为常数,方程①的根为非负数.
(1)求m的取值范围;
(2)若方程②有两个整数根x1、x2,且m为整数,求方程②的整数根.
科目:初中数学 来源: 题型:
【题目】一辆货车从甲地出发以每小时80 km的速度匀速驶往乙地,一段时间后,一辆轿车从乙地出发沿同一条路匀速驶往甲地.货车行驶2.5 h后,在距乙地160 km处与轿车相遇.图中线段AB表示货车离乙地的距离y1 km与货车行驶时间x h的函数关系.
(1)求y1与x之间的函数表达式;
(2)若两车同时到达各自目的地,在同一坐标系中画出轿车离乙地的距离y2与x的图像,求该图像与x轴交点坐标并解释其实际意义.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系中,已知点A(-3,0)、B(0,4),对△OAB连续作旋转变换 ,依次得到△1、△2、△3、△4…,则△2017的直角顶点的坐标为 __________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(2017浙江省温州市)如图,矩形OABC的边OA,OC分别在x轴、y轴上,点B在第一象限,点D在边BC上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD对称(点A′和A,B′和B分别对应).若AB=1,反比例函数(k≠0)的图象恰好经过点A′,B,则k的值为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=﹣+bx+c图象经过A(﹣1,0),B(4,0)两点.
(1)求抛物线的解析式;
(2)若C(m,m﹣1)是抛物线上位于第一象限内的点,D是线段AB上的一个动点(不与A、B重合),过点D分别作DE∥BC交AC于E,DF∥AC交BC于F.
①求证:四边形DECF是矩形;
②连结EF,线段EF的长是否存在最小值?若存在,求出EF的最小值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知,点分别在上,且,将射线绕点逆时针旋转得到,旋转角为,作点关于直线的对称点,画直线交于点,连接,,有下列结论:
①; ②的大小随着的变化而变化;
③当时,四边形为菱形; ④面积的最大值为;
其中正确的是_____________.(把你认为正确结论的序号都填上).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在⊙O中,直径CD垂直于不过圆心O的弦AB,垂足为点N,连接AC,点E在AB上,且AE=CE,过点B作⊙O的切线交EC的延长线于点P.
(1)求证:AC2=AEAB;
(2)试判断PB与PE是否相等,并说明理由;
(3)设⊙O的半径为4,N为OC的中点,点Q在⊙O上,求线段PQ的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com