分析 由三角形中位线定理得出MN∥AB,MN=$\frac{1}{2}$BD,PN∥CE,PN=$\frac{1}{2}$CE,MQ∥CE,MQ=$\frac{1}{2}$CE,因此PN=MQ,PN∥MQ,资产四边形PQMN是平行四边形,再由已知条件得出MN⊥MQ,证出∠NMQ=90°,即可得出四边形PQMN是矩形.
解答 证明:∵M,N分别是DE,BE的中点,
∴MN是△BDE的中位线,
∴MN∥AB,MN=$\frac{1}{2}$BD,
同理:PN∥CE,PN=$\frac{1}{2}$CE,MQ∥CE,MQ=$\frac{1}{2}$CE,
∴PN=MQ,PN∥MQ,
∴四边形PQMN是平行四边形,
∵∠A=90°,
∴BA⊥CA,
∵MN∥AB,MQ∥AC,
∴MN⊥MQ,
∴∠NMQ=90°,
∴四边形PQMN是矩形.
点评 本题考查了矩形的判定、平行四边形的判定、三角形中位线定理;熟记矩形的判定,由三角形中位线定理证出PN=MQ,PN∥MQ,MN⊥MQ是解决问题的关键.
科目:初中数学 来源:2017届湖北省大冶市九年级3月中考模拟数学试卷(解析版) 题型:判断题
如图1,在菱形ABCD中,AC=2,BD=2
,AC,BD相交于点O.
(1)求边AB的长;
(2)如图2,将一个足够大的直角三角板60°角的顶点放在菱形ABCD的顶点A处,绕点A左右旋转,其中三角板60°角的两边分别与边BC,CD相交于点E,F,连接EF与AC相交于点G.
①判断△AEF是哪一种特殊三角形,并说明理由;
②旋转过程中,当点E为边BC的四等分点时(BE>CE),求CG的长.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com