精英家教网 > 初中数学 > 题目详情
16.在?ABCD中,如果∠D=74°,那么∠A,∠B的度数分别为106°,74°.

分析 由平行四边形的性质得出∠B=∠D=74°,∠A+∠D=180°,得出∠A=180°-74°=106°即可.

解答 解:∵四边形ABCD是平行四边形,
∴AB∥CD,∠B=∠D=74°,
∴∠A+∠D=180°,
∴∠A=180°-74°=106°;
故答案为:106°,74°.

点评 本题考查了平行四边形的性质、平行线的性质;熟记平行四边形的性质是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

6.如图,已知抛物线y=$\frac{1}{3}$x2+$\frac{2}{3}$x-$\frac{8}{3}$与x轴交于A、B(点A在点B左侧),与y轴交于点C,顶点为D,点E在线段AB上,且AE:EB=1:2.
(1)请直接写出点A、B、D、E的坐标;
(2)作直线AD,将直线AD绕点A按逆时针方向旋转α°(0°<α<180°),速度为5°/s,旋转到某一时刻,在该直线上存在一点M,使以M、E、B为顶点的三角形是直角三角形,且满足条件的点M有且只有三个不同位置,求旋转时间;
(3)连接AC,在x轴上方的抛物线上找一点P,使∠CAP=45°,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.已知:在△ABC中,∠A=90°,D,E分别是AB,AC上任意一点,M,N,P,Q分别是DE,BE,BC,CD的中点,求证:四边形PQMN是矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.已知△ABC中,AB=AC=5,BC=8,点D在BC边上移动,连接AD,将△ADC沿直线AD翻折,点C的对应点为C1
(1)当AC1⊥BC时,CD的长是多少?
(2)如果CD=3,请求出△AC1D与△ABC重叠部分的面积;
(3)当CD≤4时,在点D移动的过程中,是否存在△BC1D为直角三角形的情形?若存在,求出CD的长;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.平行四边形ABCD中,AB=5,EF=2,∠A、∠D的平分线交BC于E、F,则BC=12或8.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.如图,在?ABCD中,AC⊥AD,∠B=30°,AC=2,则?ABCD的周长是4$\sqrt{3}$+8.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.观察思考
有一张三角形纸片ABC,∠ACB=90°,AC=8cm,BC=6cm,沿斜边AB的中线CD把这张纸片剪成△AC1D1和△BC2D2两个三角形,如图1所示,将纸片△AC2D2沿D2B的方向平移(点A,D2,D1,B始终在同一条直线上),当点D2与点B重合时,停止平移.
解决问题
在平移过程中(如图2所示),设C2D2与BC2交于点E,与C2D2交于点F,试判断四边形FD2D1E可能是菱形吗?请求出平移的距离;如果不可能,请说明理由;
拓展延伸
现又有一张平行四边形纸片ABCD,AB=10cm,AD=6cm,BD=8cm,沿对角线BD把这张纸片剪成△AB1D1和△AB2D2两个三角形,如图3所示,将△AB2D2沿AB1方向平移,在平移过程中点B2始终在AB1上,AB1与CD2始终保持平行,当点A于点B2重合时,停止平移,在平移过程中(如图4所示),AD1与B2D2交于点E,B2C与B1D1交于点F,四边形B2FD2E是什么四边形?判断并说明理由.
迁移应用
在图4中,四边形B2FD2E的面积有可能是13cm2吗?判断并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.($\frac{1}{2}$)-1=2,(π-3)0=1.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.已知a=-3-2,b=-0.32,c=(-3)0,$d={(-\frac{1}{3})^{-2}}$,把这四个数从小到大排列为a<b<c<d.

查看答案和解析>>

同步练习册答案